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ABSTRACT

A class of nonlinear Sturm-Liouville problems is considered. These

problems admit zero as a trivial solution and the nonlinear operator

linearized about zero has a purely continuous spectrum (0, ). Variational

tachni-ques- and approximation arguments are used to obtain the existence of

nontrivial solutions with any prescribed number of nodes and for some

nonlinearities it is shown that this solution is unique. Moreover, the lowest

point of the continuous spectrum is a bifurcation point; infinitely many

continua of solutions, which are distinguished by nodal properties, bifurcate

from the line of trivial solutions at this point. Results are also obtained

in higher dimensions via investigation of the set of radial solutions of

appropriate partial differential equations. "
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10. INTRODUCTION

Bifurcation questions for nonlinear elliptic eigenvalue problems

on unbounded domains have recently been studied by various authors

(1]-tllI,113],[23],[28],[29],(42]). They have found that the lowest

point of the continuous spectrum of the linearized operator is a

potential bifurcation point. In these papers, there are mainly two

kinds of bifurcation phenomena that have been dealt with: (i)

bifurcation of solutions having parameter values in the continuous

spectrum (I-18]) and (ii) bifurcation of solutions having parameter

values not in the continuous spectrum ([9]-[11]).

In this thesis we further study such problems pertaining to

(M). We consider a nonlinear Sturm-Liouville eigenvalue problem for a

family of ordinary differential equations and a related class of

partial differential equations. In the ordinary differential equation

case, we study the boundary value problem

-u" = Xr(x)u - F(x,u)u, 0 < x < + (0.1.a)

u(O)cos6 - u'(0)sine = 0, u c L2 C0,-) (0.1.b)

where r and F are nonnegative continuous functions. F(xO) = 0

and 0 c [0, 1]. The related problem in the partial differential

equation case is

-Au - Xr(x)u - F(x,u)u x C R (0.2.a)

u c L2 (RN) . (0.2.b)

Kapper (1), [21 first pointed out that a minimal growth condition

with respect to x for the nonlinearity is needed to ensure the

%Vl
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existence of an L2-solution of (0.1). In particular, if

F(x,y) = w(x)jyIO, then there exists a nontrivial L2-solution if and

only if f -2/'Odx < +-. The point X - 0 is the infimum of the
0

continuous spectrum. KUpper proved that for any X > 0 there exists

a positive solultion and that thesc solutions form a continuum

bifurcating from (X,u) = (0,0). By a continuum of solutions, we mean

a set of pairs (X,u) cR x E, satisfying (0.1), which is connected

with respect to a reasonable topology in a function space E

associated with (0.1).

Applying arguments due to Ljusternik and Schnirelman, Bongers,

Heinz and K(1pper [3] considered Dirichlet boundary value problems for

both ordinary differential equation and partial differential equation.

They proved in particular for problems like (0.1) and (0.2) that for

every r > 0, there exists a sequence (r) ,(r) I of solutions

such that I 2r) = r and that lim k(r ) 
- while

Lu 2 k

lm )(r) = 0. In the ODE case, Heinz [6] further related ther+O 
"

Ljusternik-Schnirelman critical levels associated with (0.1) to nodal

properties of solutions. This work [31 shows the problem has a

sequence of solution "branches" emanating from (X,u) = (0,0) and a

natural open question is whether these "branches" are connected.

Jones and KUpper [4] studied a more restricted problem
p

-uW u - W(x)Iu{uu, 0 < x < +- (0.3.a)

u(O) - 0, u c L2[0,0) • (0.3.b)

They used various assumptions on w near infinity, a good model case

being w(x) " p(x)eax with a > 0 and p(x) > 0 a polynomial. For

b;, ] .. ,-, .,,.,.. . .. .,,,, ._ . . .,.. ,. .... . . ,.
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each X > 0, they employed phase portrait techniques to construct a

sequence (UkX)k1l of solutions such that uk,X has exactly k - I

distinc.t interior zeroes. Moreover, UkX + 0 as X + 0.

More recently, Heinz [7] treated (0.3) imposing the following

hypotheses:

I* log w is convex

20 w is monotonically nondecreasing

30 w' attains positive values

and proved for fixed X that L2-solutions with a fixed number of

zeroes cannot be the limit point of L2 -solutions which possess the

same nodal property. Thus, among these L2solutions having the same

nodal property, there is one, having a minimal (in magnitude) A

derivative at x = 0, which he called the "preferred solution". He

showed the "preferred solutions" form connected sets and all of these

continua emanate from the point (0,0) c R x L2 in some suitable

norm. Then, in [8], he used arguments of Ljusternik-Schnirelman type

to get further existence results for solutions of (0.1).

Zn this thesis, we will investigate various questions for problem

(0.1):

(a) Existence and uniqueness of positive and negative solutions.

(b) Existence and uniqueness of solutions with a prescribed number of

nodes.

(c) Bifurcation of connected sets of solutions which possess nodal

properties.

In 11, we will mainly aim at question (a) for (0.1). Under the

following 4ssumptions:



4 !g,

(r.1) r c C([0,-),(0,m)) 0 < r, <r(x) 4 r2 < +- for x [

(F.1) F - [0,o) x R + 0,aa) is continuous. .

(F.2) There exist positive numbers ai and continuous functions

i : [O,co) + (0,-) which satisfying f Wi dx < +w,
0

i - 1,2 such that F(x,y) > wl(x)lylI' for x c [0,-),

y ) 0 and F(x,y) ) w2 (x)y1 2 for x c [0,co), y < 0.

(F.3) lim F(x,y) = 0 uniformly on compact subsets of [0,-).

(F.4) For fixed x c [0,ao), F(x,y) is an increasing function of y

if y > 0 and a aecreasing function of y if y 4 0.

We will prove

Theorem 0.4

Given ) > 0 and 8 c [0, -], there exists a unique positive

(resp. negative) solution u which satisfies (0.1). Moreover,

u C C2 [0,_) r) H [0,w) and u(x) + 0, u'(x) + 0 as x '.

To obtain the existence, an approximation approach will be usedl

taking as approximate solutions those for the bounded interval case.

Compared to variational methods, our argument has the advantage that

(P.5) F(x,-y) - F(x,y) for x c [0,-), y c R

need not be assumed. In the variational argument used in [3], [6] and

[81 the growth condition f W 2 /ldx ( +m is used to give a compact
0

imbedding property. Here, we use it to provide a prior estimates

which allow us to pass to the limit from approximate solutions.

I



Uniqueness will be proved with the aid of several useful

"mnotonicity" properties for positive and negative solutions derived

from the monotonicity assumption (F.4). Also, in the proof of the

existence result, "monotonicity" properties will be used to prevent

the limit of approximate solutions from degenerating to the trivial

solution.

In 12, a method that pieces together alternately positive and

negative solutions on adjacent intervals will be used to obtain

solutions with a prescribed number of nodes. This idea originated

with Nehari t151 for a bounded interval. The same kind of technique

was generalized to an unbounded domain by Ryder 116]. Hempel E17]

also used such an approach on a rather different class of equations

* for a bounded domain. Our argument is closely related to Hempel's.

However, we treat the problem for the unbounded domain case. Our main

result in §2 is:

Theorem 0.5

Assume (r.1), (F.I)-(F.4) and (F.5) are satisfied. Given I > 0

and 9 C [0, 2]. Then for every n • 1, there exists a solution

which satisfies (0.1), having exactly n - I zeroes in (0,e), and

being positive (resp. negative) in a deleted neighborhood of x - 0.

In 13, with the help of the "monotonicity" properties of §I, we

use the solutions obtained in §2 as starting points and construct an

iteration scheme to get the result of Theorem 0.5 under the weaker

symmetricity assumption:

(F.5)' There are positive numbers 6 and X such that

,(x,-y) F(xy) for x c (X,) and ' C,

.. * .~-. **~*II\ ~ s~~* w'
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In 14, we consider the problem with a special form for the

nonlinearity

-u" - Au - 4'(w(x)Iuja)u, 0 < x < +- (0.6.a)

u(0)cose - u(Osine = 0, u C L 2 [0,00) * (0.6.b)

Assuming i(t) > ptq , ' > 0, w'(0) > 0 and

(w.1) !-- is nondecreasing on 10,). %

We prove the uniqueness of solutions having a prescribed number of

nodes. Since the problem Heinz treated in (8] is a special case of

(0.6), we solve a question which was left open in [8]. Having this

uniqueness result we then show that there are infinitely many

continuous curves of solutions for (0.6) which are characterized by

their nodal properties. Each curve can be parametrized by the

corresponding eigenvalue parameter I and all these curves bifurcate

from (0.0).

In §5, we give a bifurcation result which is applicable to more

general nonlinearities. However, the result is weaker than that in §4

in that only connected sets rather than curves of solutions will be

obtained.

in 16, we study radial solutions of (0.2). Let p denote the

radial variable. The growth condition f W-21dx < - in the one-
0

dimensional case will be replaced by a parallel one, f pN-1- 2 /ado
0

< 4 here. If ^(x) = w(p) for Jxf - P, x C RN, this is

equivalent to f -2 /adx < i- which has been used in [3] and [8)
N

'J' 'e 'P
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although they considered general solutions rather than radial ones.

However, looking for radial solutions allows us to pursue soluticns

with nodal properties. The main new difficulty here is the occurrence

of a singularity in the equation at the origin. We overcome this

difficulty by making an additional approximation. Using a

transformation of variables and results established in previous

sections, we obtain analogous results to those in the one-dimensional

case.

N•,
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J1. EXISTENCE AND UNIQUENESS OF POSITIVE AND NEGATIVE SOLUTIONS

In this section, we will obtain existence and uniqueness results

for positive and negative solutions for the following problems

-u A = r(x)u - F(x,u)u, a < x + (1.1.a)
u(ajcosO - u'(a)sinS = 0, u C L 2[a,) (1.1.b)

where a 0 and 0 e . Throughout §1-§5, prime will always
I2

denote differentiation with respect to the space variable. The

functions r and F are assumed to satisfy

(r.1) r e C([0,-),(O,)), 0 < rI - r(x) < r2 < +- for x c [O,w).

(F.1) F : [0,ao) x R + [0,-) is continuous.

(F.2) There exist positive numbers ai and continuous functions

c - 2 /aid
i * [0,m) + (O,w) which satisfy f Wi dx < +, i = 1,2,

0

such that F(x,y) > wl(x.1yl for x c [0,-), y > 0 and

F(x,y) > c2 (x)jyja
2 for x C [0,0.), y < 0.

(F.3) lim F(x,y) = 0 uniformly on compact subsets of (0,m).

SY 1+0
(F.4) For fixed x C [0,am), F(x,y) is an increasing function of y

if y ) 0 and a decreasing function of y if y ( 0.

By a solution of MI~a we mean u C 2[a,-) n 1 [a,-) which satisfies

Now, we state the main existence result for positive and negative

solutions:

Theorem 1.2

Suppose (r.1), (F.I)-(F.4) are satisfied. Given A > 0, a > 0

and 0 4 8 < - there exists a positive (resp. negative) solution u
2

9 V

.V P f V\u .
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which satisfies (Mfa and

lrm u(x) = 0, lim u'(x) = 0

Remark 1.3

The existence result of positive and negative solutions has been

obtained via different methods ([1]-[8]. However, they only treated

the boundary condition 0 = 0 in (1.1.b). In E3], t6) and [8] the

authors imposed the minimal growth condition on the function

g(x,y) 8f(x,y) where f(x,y) = F(x,y)y. It is easy to see ifay

F(x,y) W(x)fyja and if exists then, by (F.4), g(x,y) = P(x,v) +ay

y*F(x') > F(x,y) > w(x) 1yj1 . Also, they assumed an upper bound

for g(x,y) which we do not need.

Our strategy is to approximate solutions of (M~a by those of

-u" - Xr(x)u - F(x,u)u (1.4.a)
MIa,b u(a)cose - u'(a)sin8 = 0, u(b) - 0 . (1.4.b)

Existence results for (1.4) have already been established in the

literature (e.g. [24]). A partial uniqueness result is known for

(1.1). The more general form we require is:

Theorem 1.5

Suppose (r.1), (F.1) and (F.4) are satisfied. Let X > 0, a > 0

and 0 4 0 4 - be fixed. If U1,U2 are two solutions of (I)a, b2

(resp. (I)a) such that U1 1U2 > 0 or U1,U2 < 0 on (a,b) (resp.

(a,-)), then

u 1  U2 in (a,b] (resp. [a,-))

Since the proof of Theorem 1.5 will immediately follow from a

"monotonicity" lemma, we postpone it till then.
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Remark 1.6

(a) For a bounded or unbounded domain with 6 0 this result

has been obtained by several authors (e.g. [1],[3],[4],[6],

[7],[17],[22] ).

(b) We will let V_(X,a,b,eo) (resp. V+(X,a,-,O,-))

represent the unique positive and negative solution for

(I)a,b (resp. (,)a ) respectively. When some of parameters

X,a,b,O are known or considered fixed they will be

suppressed in the above notation.

(c) If the function F in (1.1.a) is furthe'_ assuned tc satisfy

F(x,-y) = F(x,y) for x c [0,-), y c R, then it is clear

that V. - -V+.

To prove Theorems 1.2 and 1.5, we need some preliminaries which

including technical results, "monotonicity" lemmas and estimates of

solutions for (1 )a and (T)a,b* We first state a result of Wintner and

Hartman (21].

Lemma 1.7

Let 1 and 2 be continuous functions on [a,-) such that

72 2

91 is bounded from above and 92 c L2[a,). If u is a solution of

the differential equation u"(x) + 9 1 (x)u(x) = 92 (x) and u c L2 [a,-)

then u c H1[a,-) and u(x) + 0, u'(x) + 0 as x + -.

Next, we prove two technical lemmas.

Lemma 1.8

Suppose 91,92 C C[cS] (resp. [e,-)). Then there are no

functions u'v C C2[c,8] (resp. [a,-)) satisfying

u(a)vc(a) - u'(a)v(a) 4 0 (1.9)
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u(8)v'(8)-u'(~v() > 0 (resp. lim u(B)v'($)-u'(O)v(B) > 0) (1.10)

and for x c (a,$) (resp. (a,-))

\' v>O

-u" (x)U(1.11)

v"> V2 (x)v (1.12)

T2 1 1 (1.13)

Moreover, at least one of inequalities (1.9), (1.10) is strict or at

least one of (1.11)-(1.13) has stricr inequality on a subinterval of

(a,$) (resp. (a,-)).

Proof

If u,v > 0 multiplying (1.11) by -v and (1.12) by u and

adding together, we obtain

uiv - v"u > (9 2 (x) - T1 (x))uv • (1.14)

Since u"v - v"u - (u'v - v'u)' by integrating (1.14) on

[Q,8], we have

u'W)v(S) - v'(s)u(8) - u'(a)v(a) + v'(a)u(a)

) f (92 (x)-y 1(x))uvdx . (1.15)

From (1.9) and (1.10) we know the left-hand side of (1.15) is

nonpositive and is negative if at least one of inequalities (1.9),

(1.10) is strict. On the other hand, the right-hand side of (1.15) is

nonnegative and is positive if 12(x) > 1 (x) on a subinterval of

[(,*]. Finally, note that the inequality of (1.15) is strict if

(1.11) or (1.12) is strict on a subinterval of (a,$]. Therefore, if

one of the above cases occurs, we have a contradiction to (1.15).

, ilV ~ / ~M -V~ .
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In the case of (a,-), the proof is the same except for letting

+ - in (1.15). The proof for the case u,v < 0 is similar. We

omit it.

Corollary 1.16

Suppose 91,9 2 c Ca,B] (resp. (a,-)) and let u,v C C2 C'61

(resp. [a,-)) such that u(a) = v(a) and u(8) = v(8) (resp.

lim u(a)v'(a) - u'(8)v(8) = 0). If, for x c (a,S) (resp. (am)),

we have (1.11)-(1.13) and one of them has strict inequality on a

subinterval of (a,8) (resp. (a,-)). Then neither

(i) u(x) > v(x) > 0 for x c [a,8] (resp. (a,-))

nor

(ii) v(x) < u(x) < 0 for x c Ea,8) (resp. [a,-))

can occur.

Proof

Suppose (i) occurs, then u'(a) ) v'(a) and u'(B) 4 v'(8) in

the caq of ta,8], hence (1.9) and (1.10) are satisfied and a

contradiction immediately follows from Lemma 1.8. An analogous

argument takes care of (ii). We omit it.

Having these lemmas as consequences, we are going to establish

several "monotonicity" properties of positive and negative solutions

for (1) a,b and (I) a- In the remainder of this section, when the proof

for the positive solutions is the same as that for the negative

solutions we will only carry out the former.
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Corollary 1.17

Let u and v be positive (resp. negative) solutions of (1.18)

and (1.19) respectively:

-u" = Xr(x)u - F(x,u)u (1.18)

-v" = ps(x)v - H(x,v)v . (1.19)

Suppose the functions rs and F,H satisfy, respectively, (r.1) and

(F.1), (F.4). If

Xr 4 us (1.20)

and

F P H (1.21)

then

() If u and v satisfy (1.4.b), we have

ju(x)j 4 jv(x)l for x c (ab) if e = 0 and for

x e [a,b) if 0 < 8 <-! (1.22)

lu'(b)l C Iv'(b)l and lu'(a)l lv'(a) l. (1.23)

(ii) If u and v satisfy (1.1.b), we have

ju(x)j -4 [v(x)I for x c aw if 9 -0 and for

S, if 0 < (1.24)

and lu'(a)l Iv'(a)I . (1.25)

Moreover, if the inequality (1.20) is strict or F(xy) > H(xy) for

y 0 0 then inequalities (1.22) and (1.24) are strict.

Remark 1.26

This generalize results of KUpper (13 and Heinz [6] where they

treated the case 8 - 0 and obtained the "monotonicity" of solutions

with respect to the eigenvalue parameter ).
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Proof

(i) Suppose u(t) > v(t) > 0 for some t c (a,b). By the

continuity of u and v and the boundary condition (1.4.b) we

know there is a subinterval (a,a) of (a,b) such that either

10 u(x) > v(x) > 0 for x c ($,) and

u(O) -= ) u(s) = v(S)

or

20 a = a, u(x) > v(x) > 0 for x c [a,$), u(S) = vW-

Suppose first that 10 prevails. Let q1(x) = Xr(x) -

F(x,u(x)), 92 (x) = Us(x) - H(x,v(x)) for x E [a,$]. Then it

follows from (F.4) that F(x,u(x)) > F(x,v(x)) for x c [c,8]-

Thus, together with that Xr < Us and F ) H, we have

q2(x) > O1 (x) for x e [a,$] • (1.27)

Applying Corollary 1.16, we get a contradiction. Therefore 10

is not possible.

Next suppose that 20 holds. Arguing like the beginning of

the proof of Lemma 1.8, with the same 91'92 as defined above,

we obtain

u'(S)v($) - vI($)u(8) - u'(a)v(a) + v'(a)u(a)

0N

- f (T2(x) - 1(X))uv • (1.28)
a

From (1.4.b), we have

u'(a)v(a) - v'(a)u(a) - 0 (1.29)

and it is clear that

u(B)v'(B) - u'(B)v(B) 0

Applying Lemma 1.8, we conclude that 21 is also impossible.

%j



Therefore (1.22) must be valid, and (1.23) immediately follows

from (1.22). Moreover, if u(t) -v(t) for t c (a,b) in the

case e =0and for t c [a b) in the case 0 < 8 < -1 then

letting z u - v, we have z(t) = 0 and z(x) 4 0 for

x c [a,b]. !bus z has a maximum at t. However, from (1.18)

and (1.19)

z"(t) =EF(t,u(t)) - H(t,u(t)) + iis(t) - Xr(tflu(t)

which is positive if the inequality (1.20) is strict or

F(x,y) > H(x,y) for y #' 0. This contradiction indicates the

inequality (1.22) in this situation must be strict.

(ii) Suppose again that u(t) > v(t) > 0 for some t E a,)

by the boundary conditions u,v c L2 [a,-s) and Lemma 1.7 we know

that u(x) + 0 and v(x) + C as x +* +-. Hence by the

continuity and boundary conditions (1.*1 .b), there is a

subinterval (ci,B) of (a,-) such that either 10 or 20 as in

()occurs except that now S could be +-.

In case $ is finite, the proof is contained in (i). Thus

vs consider the situation that 8 .With the sameT19

an above and by the same reasoning as shown in (1.27), we have

V2 > T1 for x c [a,-a) .(1.30)

From Lemma 1.7, it is easy to see that

lim u(x)vo(x) - u'(x)v(x) -0 .(.1

Hence it is clear that 10 is contrary to Corollary 1.16.

Therefore, we consider 20. From (1.1-b), we get (1.29). This

together with (1.30) and (1.31) contrary to Lemma 1.9.

------- ------ , .



Therefore (1.24) must hold and the last assertion implies

(1.25). Finally, the same argument as in (i) shows the

inequality (1.24) is strict provided that the inequality (1.20)

is strict or F(x,y) > H(x~.y) for y -; 0.

Proof of Thieorem 1. 5

Let u and v be positive solutions for (I)b xsp '~'

then it follows from (1.22) (resp. (1.24)) that u >v and v > u.

Therefore, u =-v.

Corollary 1.32

Let u and v be positive (resp. negative) solutions of

equation (1.1) and satisfy, respectively, the boundary conditions

either

(1) u(a)cosO1 - u'(a)sine81  0, u(b) - 0 (1.33)

v(a)cosO 2 - VI(a)sin82 -0, v(b) - 0 (1.34)

or

(ii) u(a)cos81 - u'(a)sin81  0, u1 c L2 [a,QO) (1.35)

v(a)cos92 - v'(a)sinB2 =0, v c L2(a,a.) .(1.36)

Assume (r.1), (P.1) and (F.4) are satisfied. If 0 4 01 8 2 < i

then

fu(x)f e. v(x)I for x c la,b) in case Wi (1.37)

or

ju(x)j < Ivrx)l for x c [a,-) in case (11) . (1.38)

Moreover, if e2 > 61 and we further assume

(f.1) f(x,y) is locally Lipschitz continuous in y

then inequalities (1.37) and (1.38) are strict.
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Proof

MI) Suppose u,v are positive solutions and u(t) > v(t) > 0

for some t e (a,b). Arguing as in the beginning of the proof

of Corollary 1.17 (1), we proceed to the situation 10 or 20 as

in there. Let T1(x) = Xr(x) - F(x,u(x)),

92 (x) = Xr(x) - F(xv(x)), it follows from the assumption

(F.4) that T2 > 91 and hence 10 violates Corollary 1.16.

To consider 20, suppose first 0 = el 4 02 < W. From

- 0 and (1.33), we know u(a) - 0 and u'(a) , 0. Since

v(a) ) 0,

u(a)v'(a) = 0 4 v(a)u'(a)

If 0 < 81 4 82 < , (1.33) and (1.34) are equivalent to

u' (a)
u( a) o8

and

v' (a) cot 2
v(a)ot

Since cote I - cot82, we get

u(a)v'(a) 4 v(a)u'(a) •(1.39)

Thus, we have (1.39) in either case. Also, since

u(x) > v(x) > 0, for x c [a,) and u(B) - v(S),

v'(8) ) u'(S). Hence

u(M)v'(B) - u'(O)v(B) 0 0

But then Lemma 1.8 shows this is not possible and hence u 4 v.

To prove the final assertion, suppose u(s) - v(s) for some

S(a,b). Then (1.37) implies u'(s) - v(s). If (f.1) is

satisfied, the basic existence-uniqueness theorem for the

or ' if



initial value problem tells us u v which is obviously absurd

due to their different initial conditions at a. Thus

Vfx) > u(x) for x c (a,b).

Next, if u(a) = v(a) > 0, then (1.33), (1.34) together

with 0 4 91 < e2 < f imply u'(a) > v'(a), however (1.37)

tells us that u'(a) < v'(a) which leads a contradiction.

Finally, if u(a) = v(a) = 0 it follows from 02 > 0 that

v'(a) = 0. Then v - 0 via (f.1), contraxy to hypothesis.

(ii) The proof is the same as in (i) except for handling the case

8 -- +. This is easily carried out, using Lemma 1.7, as in the

proof of Corollary 1.17 (ii).

Before continuing giving more "monotonicity" properties of

solutions, we quote a known existence result for (1.4). Let

On ' ln(ab,8), (n - 1,2,3,...) be the n-th eigenvalue of

-V" - Ar(x)v, a < x < b (1.40.a)

v(a)cpse - v'(a)sinO = 0, v(b) = 0 , (1.40.b)

the linearized equation of (I)a,b linearized about the trivial

solution u s 0. It is well-known (see [27]) that

0 < i1 < J2 < *-* ( < Un < (1.41.a)

lrm Pn(ab,8) = +- , (1.41.b)

n+=

the functions Un are continuous in a, b and 0, and for fixed

a and 8, the Un are decreasing functions of b such that

lira+ un(a,b,S) 0 ,1.41.01"i

bsa

and
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Jim 1J,(a~be) 0 .(1.41.d)

b+mo

Moreover, if a and b are fixed, U. are decreasing functions of

8 for 0 4 e
2

Remark 1.42

We use the notation Un(a,b) when 8 is known or considered

fixed and simply write Un if a, b and 0 all are fixed.
+

We denote by Sabn(A,) (resp. Sabn(OO)) the sets of

u c C'ta,b] such that u satisfies (1.4), u > 0 (resp. < 0) in a

deleted neighborhood of x = a, u has exactly n - 1 simple zeroes

in (a,b) where X > 0, 0 4 e - and n ; 1 is an integer.
2

Proposition 1.43 ',

Suppose (r.1), (F.I)-(F.3) are satisfied. Let 0 4 8 Z be
2

fixed

(i) If X 4 u1 and u is a solution of (Ia,b then u 0.

(ii) If X < Un and u is a solution of (1)a,b then

u d Stbn(AB).
+

(iii) For any A > Uno Sa,b,n(A'O) p d and Sa,b,n(AB) ' 0.

Remark 1.44

Proposition 1.43 is actually a special case of a more general

result in t25] and (F.2) can be replaced by any assumption which

insures that F(x,y) + - as IY + "

Corollary 1.45

Suppose (r.1), (F.1I)-(F.4) are satisfied

(j) Let 0 < 8 <1 be fixed in (1.1.b) and (1.4.b). If
2

X > Ul(a,b,8) and b < b, < +w then for x c (a,b)
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IV± (,,a,b,x)l 4 IV.(X,a,bl,x)l • (1.46)

If 0 < 6 € ., (1.46) holds for x c (a,b). If 0 < 6 <
2 2

IV (X,a,b,a)l 4 jVj(X,a,bj,a)1 • (1.47) ,

(ii) Let 8 = 0 in (1.1.b) and (1.4.b). If X > Ul(a,b,0) and

Z1 < a then for xc [a,b)

Ii:(X,a,b,x)l -4 I(/+(X,al,b,x)l (1.48)

and
and{Vj.(X,a,b,b)j jVt+(X,al,b,b)j (1.49)

If A > 0 and a1 < a then for x C [a,-)

IV±(X,a,-,x)l IV±(A,al,o,x)l • (1.50) I
'-a.

(iii) Let 0 < 6 4 - be fixed in (1.1.b) and (1.4.b) and
2

A ) u1(a,b,8). Let, a1 < a and F1(x,y) = F(x,y)/r(x). If

for all fixed y # 0, Fl(xy) is nondecreasing in x, then

(1.48)-(1.50) hold.

(iv) Let 8 - 0 in (1.1.b), (1.4.b). If X > u 1(a,b,0) and a, < I
a < b < b, 4 +- then for x c [a,b]

IV(X,a,b,x)! 4 IV+(X,aj,bjx)I (1.51) :.

(v) Let 0 < e - be fixed in (1.1.b), (1.4.b). Suppose for fixed
2

y # 0, FI(x,y) is nondecreasing in x. If X > p1 (a,b,8) and

a I < a < b < b I 4 +-, then for x c ta,b] (1.51) holds.
,

Moreover, if (f.1) is further assumed, all inequalities (1.46)-(1.51)

except for the inequality (1.50) of (iii) in the case 8 - - are

2

strict. The exceptional one is also strict provided that in addition

aF1  aF1,4

to assuming (f.1), L-- > 0 and IF, > 0 for y # 0 are also
ax a

satisfied.

I
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Remark 1.52

In this corollary, we suppress the dependence on e from our

notation V±.

Proof

(M1 Put u - V+(A,ab,) and v = V+(Aabl•,). Suppose

u~t) > v(t) for some t c (a,b). By the continuity of u,v

the positivity of uv and the boundary conditions u(b) = 0

we proceed to the situation 16 and 20 as in Corollary 1.17 (i).

With v1 (x) - Xr(x) - F(xu(x)) and 92 (x) = Xr(x) - F(x,v(x))

the same proof as in there shows both 1 and 20 are impossible.

Thus (1.46) holds and hence (1.47) follows.

(ii) Set u V+(,ab,.) and v = V+(Xa,b,). Suppose

u(t) > v(t) for some t c (ab). Then the boundary conditions

u&a) - u(b) = 0 together with the positivity and continuity of

UV imply the situation 10 as above must occur which is

contrary to Corollary 1.16. Thus (1.48) holds and (1.49)

consequently follows. Since the proof of (1.50) is the same as

above, except for treating boundary conditions at infinity,

which has been done before, we skip it.

(iii) Let u - V+(X,a,be), v - V+(,al,b,-). It is known (see

e.g. [24], Chap. 4) that v can not have a double zero, that

i, we have v2 (x) + v'2(x) # 0. Hence the Prtfer substitution

([40], Chap. 10) can be made as follows. Define p(x) - v2 (x)
+ v'(x) Tl) acta v(x)'

+ Vv2  , r(x) - arctan -(x) , then v(x) - P(x)sinx(x),

A
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v'(x) P(x)cosT(x), "(a1) e and

dr [r(x) - F(x,v(x)))sin T(x) + coS 2(x)
dx

It is easy to see that sa

If 't(t) E [0, ') U (j, w] and Fl(t,v(t)) < X,

or T(t) - and Fl(t,v(t)) < X. then dx > 0 . (1.53.a)2 dx

Also, since v(x) is a positive solution, T(t) C (O,T) for

t C (al,b). We claim

If F1 (t,v(t)) > ), then T(t) [0, 2] (1-53.b)

if Fl(t,v(t)) > X then T(t) [0~, .).(1.53.0)

Indeed, by (1.1.a) F 1(t,v{t)) > A implies v"(t) > 0. Suppose

T(t) C [0, 2] then v'(t) 0 0. Hence v'(x) > 0 for x c (t,t + e)

with some c > 0. Since v(t) P 0, v(x) > v(t) > 0 for

x c (t,t + e]. Suppose there is an co > 0 such that

C0 - sup{elv'(x) > 0 for x c (tt + c)•

Then, since F1(x,y) is nondecreasing in x and, by (F.4), is

increasing in y, F1(t + C0 ,v(t + £0)) > F(t,v(t)) > X. Hence by the

same reasoning as above there exists a 6 > 0 such that v'(x) > 0

for x c (t + cO,t + co + 6) which is contrary to the definition of

Co. Therefore v(x) > 0 and is increasing for x > t. But this is

contrary to v(b) = 0. Thus, we have (1.53.b). Also, the same proof

except for replacing v"(t) > 0 by v"(t) > 0 and v1(t) > 0 by

vl(t) > 0 yields (1.53.c).

Now, suppose u(tj) > v(t1 ) for some tI c [ab). Arguing like

the beginning of the proof of (i), we face situation 10 or 26 as in

• ' -I • I l -' i ! -- - - - ±* 5. ? p'A' .'A -A-l
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i). Now, 10 is not possible as before. To handle 20, i.e. there

exists a 8 ' b such that u(x) > v(x) > 0 for x c [a4) and

U(S) = v(S). Note that (1.53.a) and (1.53.c) imply

if T(t) f [0, 1) then d > 0 . (1.54.a)dx

Bence, if 0 c (0, this implies TCa) > 8. So 20 is contrary to

(1.37). It remains to show the case of 0 =-!. In this case, since
2".

8 f 2' if T(a) ) -1 by (1.39i. u(a) < v(a) which violates the
2 2C

assumption of 2*. Hence, r(a) < 2 and v'(a) > 0. Let %
2

s - Inf{Iv' (x) > 0 for x c (a,a]•

Since v'(a I ) = 0, s > a. Clearly v'(s) = 0. If v"(x) < 0 for

x e (s,a), v'(a) < 0 which is absurd. Therefore there exists an

a, e (s,a) such that v"(al) > 0. By (1.1.a1, r1 (ajv(a)) > X.

However, since by the definition of s, v'(a) > 0 and T(a) 6 [0, )

which is contrary to (1.53.b). Therefore 20 is also impossible when

e U.So we obtain (1.48) for 0 , (1o j] and consequently (1.49).

To prove (1.50) let u - V+(X,a,c*,0), v = V+(A,a 1 ','0). We first %

note that (1.53.a) and (1.53.b) are still valid. The only difference

in the proof of (1.53.b) is to replace v(b) - 0 by lim v(x) = 0.

We omit the proof for the same reason as mentioned in (ii).

(Uv) and (v) immediately follow from (1.46), (1.48) in (ii) and

in (iii) respectively.

If (f.1) is satisfied and the equality occurs, by the uniqueness

result for the initial value problem u - v. In Ci), this implies

v(b) - 0. Since v ) 0 in [a,b 1 ], v'(b) - 0. But v cannot have a

double zero. Thus the inequalities (1.46) and (1.47) must be

• • | - i I
°

i i i i - ... '
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strict. Similarly u S v cannot occur in (ii), (iv) and (v). To

consider (iii). If e c (0, as we mentioned before by (1.54.a),

T(a) > 8. Hence, from Corollary 1.32, u(a) < v(a). So u E v is

not possible. The remaining case is 8 -1. Again, let
2

v V+(X,au,b,.). We claim

if b < +- and T(t) =" for t C [al,b)

then F 1 (X,v(t) < X - (1.54.b)

Indeed, pick a b, > b and put v, = V+(X,t,b1 ,-). By (i), we have

Vl(t) > v(t). Thus, if F1(A,v(t)) > A, by (F.4),

F1(A,v1 (t)) > A. This together with vI(t) = 0 contradicts

(1.53.b). Now if u = +(A,a,b,-), for b < +-, and u E v, then

v'(a,) = v'(a) = 0. By (1.54.b) and (1.1.a), v"(al) < 0 and

v"(a) < 0. Hence, there exists an e > 0 such that v'(x) < 0 for

x c (al,al + e) and v'(x) > 0 for x c (a - c,a). This implies

v has a minimum at some point 8 c (al,a). Thus v'(0) = 0 and

v"(8) 0 i.e. T(6) - I and F1j(,v(8)) ) A -ich is contrary to
2

(1.S4.b). Therefore inequalities (1.48) and (1.49) must be strict

even for the case 8 =

To show the last assertion, let u = V+(,a,o,.) and

v = V+(A,al,=,.). Suppose u S v then v'(a) - v'a 1) - 0..

Obviously, if v"(a) > 0, by (1.1.a) Fl(a,v(a)) > A which is

contrary to (1.53.b). Suppose v"(a) < 0, then v'(x) > 0 for

x e (a- ,a) with some e > 0. Let

a - Inf(cav'(x) > 0 for x c (a,a))

5%
)i

-
5

~.
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Obviously, z > a,. On the other hand, v(x) < v(a) for x c (a,a).

OF 1  OF
Since -i- > 0 and by (F.4), ay 0, we have F1 (X,V(x)) <

F1 (a,v(a)) for x c (a,a). By (1.1.a), Fl(a,v(a)) < A. Hence, for

x c (a,a), F1(x,v(x)) < I. and by (1.1.a), v"(x) < 0. This together

with v'(a) =0 implies v'(z) > 0 which contradicts the definition

of z. Thus v"(a) < 0 is not possible and it remains that

v"(a) =0. By (1-1.a), Fi(a,v(a)) ).Define the function L by

OF I
F1(x,L(x)) = X. Clearly, the asstumption - > 0 implies L(x) is 0

veil-defined. It is also easy to check by implicit function theorem

that L'(x) = - I (x,L(x))/ - (x,L(x)). Since L'(a) < 0- v'(a)

and L(a) = v(a), L(x) > v(x) for x c (a - £,a) with some c > 0.

This implies F, (x,v(x)) < X and by (1.1.a), v"(x) < 0 for such x.

Hence v' Cx) < 0 for those x. Then arguing like the case

vu(a) < 0, we obtain a contradiction again. This completes the proof.'

Remark 1.55

(a) (1.53.0) arid (1.1.a) imply V+"(),a,b,S,a) < 0 for b 4 +- and

8C (0, j)provided that (r.1), (F.1), (F.3) and (P.4) are

satisfied and F 1(x,y) is nondecreasing in x. Also note that

the proof of (1.53.c0 does not need the assumption (F.2).

However, it ensures the existence of V+(X,a,b,e,.).

(b) If (r.1), (F. )-(F.4) and (f.1) are satisfied (1.54.b) and

(1--a)impy V(A~~b,!,a) < 0 for b < +w. Moreover,

(F.2) can be replaced by an assumption which ensures the

existence of V4 (X,a,b1 , 2~ ~ for some b, c (b,-).

- % w %~~ ~ \ *~%~% % U a.-'. 2
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From Corollaries 1.32 and 1.45, we have an immediate consequence: 0I

Corollary 1.56

Assume (r.1), (F.1)-(F.4) are satisfied. Let A > 0, a ) 0

and 6 c (0, -] be fixed. If u is a solution of (I)a' then

V_(X,a,-,8,x) 4 u(x) V+OX,a,,6,x) for x [a,-).

Proof

If u - 0, there is nothing to prove. Suppose u x 0. Let zi

be i-th zero of u in (a,co), -4 = 1,2,... . Note that if u has

infinitely many zeroes in (a,-), (1.41.c) together with Proposition

1.43 (i) shows that [zi} cannot have an accumulated point in (a,-).

Since on each interval tzi,zi+ 1I u(x) = V+(X,zi,zi+ 1,0,x) or

V_(Xi,zi+1,ox). Also, on the interval [a,z 1 ] , u(x) =%

V+(C,a,zl,e,x) or V_.A,a,zlO,x). By Corollary 1.45 we know

UA,a,-,0,x) 4 V±(X,ziozi+1,0,x) V V+(A,a,a.,O,x), x O [z11z2 1

and

_(X,a,b,8,x) • V±(A,a,zl,6,x) < V+(A,a,m,8,x), x c ja,z 1 1

Since, by Corollary 1.32,

a V±(X,a,-,0,) 4 V+(X,a,-,e,-)

for 8 £ [c , 2], we complete the proof if u has infinitely many

zeroes. Suppose u has only finitely many zeroes, say I. Then, on

the interval [zz,w), u(x) - V+(X,zlm,0,x) or V_(X,z£,a,0,x), By

Corollary 1.45,

V.(,,a,-,O,x) < V+(A,z.,a,O,x) V+(X,a,,.,O,x), x c Ez ,m) •

Thus, together with the above inequalities, the result follows.

A. L 16-
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Having established these uniqueness and "monotonicity"

properties, we are going to obtain several upper bounds for u and

u' in terms of A, r2 and bounds involving w, and w2

Lemma 1.57

Suppose (r.1), (F.1) and (F.2) are satisfied. Let X > 0 and

0 < e< - be fixed. Let u be a solution of (I) Then, for
2 a,b*

any 0 < a < b < +,

lul 2 A K ( ,ab) < Kl(Xa) (1.58.a)
L [a,b]

lull 2 < K2(,ab) 4 K2 (Xa) (1.58.b)

lUl L caa,b] C K 3(X'a'b) 4 K,3(X'a) (1.58.c)
L [a,b]

full ' (A,a,b) 4 K4(Xa) (1.58.d)
L [a,b] 4

where

2 1l/°. b -i2/1i 1/2
K1(A,a,b) I (Ar2) cf i dx)

:i-i a

K 2l(,a,b) - (Ar2 11/2K 1

K 3(A,a,b) - (21CI • -21/2

K (X,a,b) - (r 2)11/2-3

and

K1 ( ,a) lim Ki ( ,a,b), I < i < 4 . (1.59)

Proof

Suppose first u is a positive solution of (lla,b . Multiplying

(1.4.a) by u and integrating it by parts we have



"47 -..*~ FV U-k-1M -W

28

b b b
u'(a)u(a) - u'(b)u(b) + f u'2dx + f F(x,u)u2dx X f r(x)u2dx

a a a

In view of the boundary conditions in (1.4.b), we know u(b) = 0 and

u'(a)u(a) 0

Hence

b b b
f U'2dx + f F(xu)u2dx f r(x)u2dx ( (1.60)

a a a

By assumptions (F.2) and (r.1), this leads to

b o1+2. b (.1

f b1u1 dx 4 Xr2 f u2dx (1-61)
a a

Next, writing u2 as the product of wI2/(a+2) and

(WIa 1  2/(al+2) and applying H6ider's inequality, we obtain

'b col/(a1+2)b u1+212/(a1+2)

a a

b 2/ae,
where c f ( Combining this with (1.61) yields

a

b 2 al/(al+2) b ud)2(l2f u2dx <c (Ar2 b u2dx)

a a

Consequently, we get

b 2 xc 2/a, b -2/a,
f U dx" 1 (Ar2 ) f w1  dx " (1.63)

a a

Going back to (1.60) and applying the assumption (r.1) again we have

b b
f u'2dx < Ar2 f u2dx
a a

te " 1" . W
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Thus, with the help of (1.63), this implies

b s d x 4 ( r ( aj 1 j b W 2/ ldx

f u'dx (Ar2 ) f dI .
*a

Likewise, the same proof shows that if u is a negative solution

of (1)a,b then

b 2/a2 fb _f u2dx 4 (Ar2) b 22/2dx

a a

and

b (2a) 2 b -2/

f u'2dx < (r 2) (2+2)/a2 f 22/02dx.
a a

To obtain estimates (1.58.a) and (1.58.b) for solutions in an

arbitrary nodal class, we assume u has interior zeroes at

ZlZ 2,.Zm , m > 1. The restriction of u to each interval of

[asz]],Ez1,z 2],...,Ezm,b] is either positive or negative. Hence

(1.58.a) and (1.58.b) hold for u on each interval with the

corresponding end-points. Summing up these estimates completes the

proof of (1.58.a) and (1.58.b).

To prove (1.58.c), it Is easy to see that

b
U2 x) =- 2uu'dt

x

for x c [a,b]. Applying Schwartz inequality, we obtain

2x) - 2(f u2dt)1/2 (f u'2dt) 1/ 2

x x

b b
C 2 f u2dt)1/

2 (f u,2dt)1 /2

a a

This together with (1.58.a) and (1.58.b) leads to (1.58.c).

) , * '*.~*~*S' -
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Finally, we need the following lemma to prove (1.58.d).

Lemma 1.64

Suppose (r.1) and (F.1) are satisfied. Let X > 0 and u be a

solution of (I)a,b (resp. (I)a) then

lul2 l L (ab] (resp. lu'lL [(b za,b] b]Lta,-)

2 L 2a, l)

Assuming the lemma, (1.58.d) easily follows from (1.58.c). Now,

we prove the lemma.

Proof

If u - 0, (1.65) is clearly satisfied. To consider nontrivial

solutions we put R(x) = X(r2 + 6)u2(x) + U'
2 (x) with S > 0. Then

it follows, with the aid of equation (1.1.a) that

R'(x) = 2[F(x,u(x)) + A(r2 + 6 - r(x))]u(x)u'(x)

From the assumption (F.1), we know F(x,u(x)) > 0. Also note that

+ r(x) > 0. Thus R' (x) has the same sign as that of

u(x)u' (x)•

Since it is easy to see that if u(t) - 0 there exists an e > 0

such that

u(x)u'(x) > 0 for t < x < t +

u(x)u'(x) < 0 for t - e < x < t

and hence

R'(x) > 0 for t < x < t + e ,

R'(x) ( 0 for t- < x < t

%
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Therefore R cannot attain its maximum at interior zeroes of u as

well as at b in the case of (I)a,b°

At the point a, if 8 = 0 i.e. u(a) = 0 the same reasoning

as above shows R(a) is not a maximum of R(x) either. Next, for

0 < e < -, u'(a) and u(a) have the same sign. Thus, R'(a) > 0
2f

which again implies R(a) is not a maximum of R(x). Finally, in the

case of M)a, it follows from Lemma 1.7 that

lim R(x) = 0
X+=

However, R(a) = X(r2 + )u 2(a) + u'2(a) > 0. Thus in all cases

(Ia and (')a, all fixqd 8, 0 4 e 4-1) we conclude that R must

attain its maximum at a point t at which R'(t) = 0 and u'(t) = 0.

Therefore

lu' L < I/RI . = V = /A(r 2+8)lu(t)l /4A(r2+6)NuI ( 11.66)

Since (1.66) holds for every 8 > 0, we get (1.65).

Proof of Theorem 1.2

Let bn = G + n and un - V+(X,a,bn,8,-), n = 1,2,3,... - Put

C - K3(,a) + K4(X,a). Then, for n 1 1, Lemma 1.57 implies

lun 1  ' c (1.67)
c [a,b nI

Let ci(n) - Max If(x,y)l, it follows from equation (1.1.a) that
x[a,b n

9. ye(Oc]

luI I <r 2c + c1(n) (1.68)u L [a,b n]

for all t;n.

V V ' %
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The bounds (1.67) and (1.68), the Arzela-Ascoli theorem and

(I.l.a) imply that there exists a subsequence fun } and a%
k

u4 c 2 [a,-) such that

2
unk--C-+ u uniformly on compact subsets of [a,-) . (1.69)
nk

Also, note that Un(a)cose - uL(a)sin8 = 0 for all n. This implies

u(a)cos8 - u'(a)sinO = 0. The "monotonicity" result (1.46) tells us

Un+i(x) > un(x) for x c [a,bn]. Hence u(x) > 0 for x c (a,w).

To show u c H1[a,-) put

unk W if a x 4 bnk

Vk(X) ='
I 0 if x >bn

Pick an M > 0, by Lemma 1.57, we have

f 2 kd 2+K
a

for all k. Invoking (1.69) we get

M

f u2 + u'2dx < K2 + K2 (1.70)
a

Since (1.70) is true for all M > a, we conclude u c .1[a,-).

Remark 1.71

The *monotonicity* result (1.46) indicates that not only a

subsequence (uI but the whole sequence fu,} converges to u.

Corollary 1. 72

Assume (r.1), (F.1) and (F.2) are satisfied. If u is a

solution of (I)a then

J6 LA!%,-
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lul 2 E Kl(,a) , (1.73.a)~L (a,..)

lull 2 I K 2 (,,a) , (1.73.b)
L [a,-)

Nul ea,- < K3 (.-,a) , (1.73.0)

fu' ( X4 (A,a) . (1.73.d)L'(a,-)

Proof

From Lemma 1.7 we know

lim u(x) 0
X~qn

and

lim u'(x) = 0
X+40

With this replacing the boundary condition u(b) = 0, the rest of the

proof can be easily carried out by the same argument as in Lemma 1.57.

We omit it.

Remark 1.74

(a) In the proof of Corollary 1.72, the solution u may have

infinitely many zeroes in [a,-). However, this does not affect

in the proof and implies that any solution of equation (1.1.a)

satisfying the boundary conditions u(a)cos8 - u'(a)sin8 = 0,

0 < 0 4-, and having infinitely many zer.es, automatically

belongs L2 [a,_), provided that (r.1), (F.1), (F.2) are assumed.

(b) An example of solutions having infinitely many zeroes was given

by Heinz [8], where he also gave a sufficient condition which

prohibits the existence of such solutions.

& r _ ~I* I= ~ 'is**~. ***~ *: 5W ~ '' ~ ~ . .%~' .YV...,.4 .. \.,fJ. '3
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(c) Ki(Aa), 1 ( i ( 4, are continuous functions of a and X.

For fixed a P 0

Jim Ki(A,a) = 0 . (1.75.a)
A+O

If X > 0 is fixed, then

lira Ki(Xa) = 0 - (1.75.b)

Before completing this section we are going to discuss the

continuous dependence of positive and negative solutions on parameters

and domains.

Proposition 1.76

Assne (r.1), (F.1), (F.2), (F.3) and (F.4) are satisfied. Let

0 4 e 4 - be fixed. Let X > 0, 0 4 a < b 4 +m and {(Xk,ak,bk)}
2k

be a sequence such that Jim (Xk,akbk) = (),a,b), where bk could

be +- if b +-.

(i) If b < + and X 4 ol(a,b) then

lim u+(k,ak,bklx) = 0
k m

and

Jlim u.(Xk,ak,bkx) = 0
k~co

uniformly for x c ta,b].

(ii) If either b < +- and I > ui1(a,b) or b - +- then

Jim u_(Xk,aklb,x) - u4(X,a,b,x)

and

lim u(Ak,ak,bkx) - u(X,a,b,x)
Ic.-
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for x c (a,b] or [a,-) in case that b = += and uniformly

on compact subsets of (a,b).

Proof

We only need to prove uniform convergence on compact subsets by

which, together with the C2-smoothness of the solutions, the

convergence at the end points follows.

Let vk V +(Ak,ak,bkO). Then arguments analogous to those of

Theorem 1.2 show that by passing to a subsequence if necessary, there

is a function v(x)

1
Vk c v uniformly on compact subsets of (a,b)

and v(x) is a solution of (1)a,b. Hence, by Proposition 1.43 (i)

v must be the trivial solution. Since every subsequence of {vkl

does so. We complete the proof of (i).

To prove (ii). Let vk be defined as above and the same

argument gives v(x). Since v(x) > 0 by Theorem 1.5, we complete

(ii) provided that v is not the trivial solution.

To show that v cannot be the trivial solution, we first treat

the case b < +-, X > U1j(a,b). Suppose v is the trivial solution

then

Vk l [I + 0 for any compact subsets [a,B] of (a,b) . (1.77)

Put Yk -'-. where i- - le1 then I~kll k- 1.
Pu k-I 1& [k b k c] c I a k bklI

Thus the same argument as above shows that by passing to a subsequence

if necessary, there is a function y(x) such that |yl c - I
c 1a,b]

and

. .1 ' 6-o V"
'
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I

Yk c y uniformly on compact subsets of (a,b) • (1.78)

From (1.77), (1.78), (1.4) and the assumption (F.3), we know that

(X,y(x)) is a solution of (1.40). Since y > 0 and lyl c'[a,b] 1,

y(x) > 0 for x c (a,b). Thus X = u1 (a,b) which is contrary to the

assumption X > pl(a,b).

Next, in case that b +=, we can pick a B1 < +- such that,

from (1.41.d), X > u1(a,$1). By (1.46) and the result we proved

above, v cannot be the trivial solution.

,.

5'



12. EXISTENCE OF SOLUTIONS WITH A PRESCRIBED NUMBER OF NODES WHEN THE

NONLINEARITY IS ODD

Now we turn to the questions of solutions with nodes. Let

> 0, a > 0, 0 < e < -1 and n > 1 be an integer. Let Sa (X,8)
*2 a ,n

(resp. S (1,0)) denote the set of u C C2 [a,-) n H Ia,-) sucha,n

that u satisfies (1.1.a) and the boundary condition u(a)cosO -

u'(a)sinO = 0, u > 0 (resp. < 0) in a deleted neighborhood of

x - a, u has exactly n - I simple zeroes in (a,-). We will show

the existence of solutions in each nodal class Sn(s). We can now

state the main result of this section.

Theorem 2. 1

Assume (r.1), (F.1)-(F.4) and

(F.5) F(x,-y) = F(x,y) for x C [0,-), y R

are satisfied. Let A ) 0, a > 0 and 0 8 - be given, then
-. 2

5, (X,e) and Sa (8) are nonempty for all n c N.a,n afn

Remark 2.2

The existence of nodal solutions has been obtained in [4] and

[6]-[8]. However, we generalize the result in several directions as

mentioned in Remark 1.3.

To prove the theorem, we will generalize a result of Hempel for

bounded intervals (Proposition 2.4, also see E171 or E18]) to the

unbounded case and use it to find solutions with a prescribed number

of nodes when 9 - 0. Starting from a solution belonging to

S1,n(X,0), those "monotonicity" properties, which were developed in

37



38

the previous section, allow us to set up an iteration scheme to

construct a solution with n - 1 nodes in the case 0 < 6 -
2

Let us assume (r.1), (F.1), (F.3) and (F.4). Also, for 0 4 a <

b < +-, we assume V+(X,a,b,0,-) (resp. VAX,a,b,0,*)) exists

whenever X > U1(a,b,O). Define the number A+[a,b] (resp. A-[a,b])

by

b
A+[a,b] (resp. A-[a,b]) = f [Xr(x)u 2 (x) - (u(x))2

a
u(x)

- 2 f f(x,y)dyjdx (2.3.a)
0

where

0 if X 4 U 1(a,b,0)U (2.3.b)

V+(A,a,b,0,o) (resp. V_) if A > u1(a,b,0)

To make the notation clear, let us recall that V+ and V, were

defined as in Remark 1.6 and in (1.41) respectively. From Theorem

1.5, we know A-[a,b] are well-defined. If F(x,y) satisfies (F.5),

then A+[a,b] = A-[a,b] due to the fact that V+ = -V-, and we

simply use the notation A[a,b]. Also, for convenience, we adapt the

notation V+(X,a,b,0,x) 0 whenever A < U1(a,b,0).

Proposition 2.4 (Hempel [17])

Assume (r.1), (F.1), (F.3), (F.4) and (F.5) are satisfied.

Suppose u = V+(A,a,b,0,.) exists if A > )j(a,b,0). Then

A[a,b] is a differentiable function of a and b with derivatives

given by

-(u' (a)) 2  (2.5.a)

-e %
. :'d 1 .
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and

2°(u' (b))2  (2.5.b)

Remark 2.6

Hemple actually imposed the stronger assumption

(F.4)' There exists a e > 0 such that for fixed x > 0, y-CF(x,y)

is a nondecreasing function of y if y > 0 and a "...
I

nonincreasing function of y if y < 0

instead of (F.4). However, in view of his proof, (F.4) would be

sufficient provided that V+(X,a,b,0,.) exists whenever

X > Ul(a,b,0). Also, it is worthwhile to mention that (F.4)' insures

the existence of V+ due to Proposition 1.43 and Remark 1.44.

Corollary 2.7

Assume (r.1), (F.1), (F.3), (F.4) are satisfied. Suppose

V+ - V+(A,a,b,Oo) (resp. V-) exists if X > Ui(a,b,0). Then

A+[a,b] (resp. A-[a,b]) is a differentiable function of a and b,

with derivatives given by

O- -(V(a) (resp. aa -(V'(a 2 ) (2.8.a) :2

and

= (V;(b) (resp. a= (V:(b) 2) . (2.8.b)
3b ab I

Proof

Since their proofs are the same only the first proof will be

carried out. Let
I

;.

I - i = i , - - I 4I l% 4 I - I -' -*.. 4 . .. . . - .- . .
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(X, ) i Y 0

{F(X,-Y) if y < 0

Then V+(AL,a,b,0,.) is also the positive solution of

-ui" =C(r(x) - H(x,u) )u

u(a) =u(b) =0

and hence the result easily follows from Proposition 2.4.

To generalize Hempel's result to the case of an unbounded

interval, we assume (r.1), (F.1), (F.2), (F.3) and (F.4) and define

A+(a,-m1 (resp. A-[a,'1) by

A Ea- (resp. A-[a,-])

Gou(x) U

f E (r(x)u 2(x) -(u' (x))2 -2 f f(x,y)dy~dx (2.9)
a 0 U

where u =V+(X,a,b,O,.) (resp. V) ada0i esml s h

notation Ata,-] whenever (F.5) is satisfied. To justify the (2.9)

is well-defined we show

Proposition 2.10

Suppose (r.1), (F.1)-(F.4) are satisfied thenV

0 < A±~h < m.

To prove the proposition, we need a few lemmas.
_N_

Lemma 2.11

Suppose (r.1), (F.1)-(F.4) are satisfied. Let A > 0 and a )k0

be fixed then A± a,b] are nondecreasing functions of b. Moreover

Mi A±la,b] -0 if A 4 0 1 (a,b,0) and

(ii) A±(a,b] > 0 if X > pl(a,b,0)

N

'r - r yr

. . .. .. .. .
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Proof

From (2.3.b), A±[a,b] 0 if X (4 W1 (a,b). Applying Corollary

2.7, we complete the proof.

Lemma 2.12

Suppose (r.1), (F.1), (F.3) and (F.4) are satisfied. Let u be

a solution of (I)a then

f f f(xy)dydx <
0 0

Proof

Multiplying equation (1.1.a) by u and integrating by parts, we

obtain

f Ar(x)u 2dx - f f(x,u)udx .= u'l(a)u(a) - u'(b)u(b) + f u'2dx

a a a

Since 0 < 0 < - it follows from (1.1.b) that u'(a)u(a) > 0 and
2

hence

b fb bu

f f(x,u)udx < f lr(x)u2dx f u,dx + u'(b)ub)
a a a

By Lemma 1.7, u c HI[a,m) and u'(b)u(b) 0 as b + +w. Thus,

there exists a constant C (independent of b) such that

b
f f(x,u)udx C C

ao

I
Letting b + a, we get

f f(x,u(x))u(x)dx < C •
a

By the assumption (F.4), f(x,y) is increasing in y if y ;o 0 and

I R
% %.
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decreasing in y if y 4 0. Hence

u(X)

f f f(x,y)dydx 1 f(xu(x))u(x)dx 4 C
a 0 a

Lemma 2.13

Assume (r.1), (F.I)-(F.4) are satisfied, then

lim A-a,b] = A±[a,c]
b~co

Proof

Let u - V+(X,a,w,0,o). From the proof of Theorem 1.2 and Remark

1.71, any sequence uk} with uk = V+(X,apbk,0,o) and bk + +c has

the property that

1

Uk C u uniformly on compact subintervals of [a,-) . (2.14)

Multiplying (1.1.a) by uk and integrating by parts, we get

bk bk

f U 2dt + f F(tuk)Ukdt = Uk(bk)u (bk)

x x

b
- UkX)U(X)+ Af r(t)u~dt

a A.}

Since Uklbk) 0 and F ) 0 this leads to ..

bk b
k u 2dt 4- Uk(xlU1(X) + X f r(t)u2dt . (2.15)

x x

From (1.46), we know for x e ta,bk] that

Uk(x) 4 u(x)•

By Lemma 1.57

lu~l 4 K 4(Xa) •
L" (a,bk

6%

, . "w' .
-
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Since lim u(x) = 0. Given e > 0, there exists an s > a such that

x4O*

if X > s

IUk(x)uk(x)l < e (2.16)

uniformly in k. Also, note that (1.46) and (r.1) imply

b kf )Xr(tludt )Xr 2 f u2dt

x x

Since u c H'Ca,-) we have, for large x, that

bk 2
f Xr(t)ukdt < e . (2.17)

xk

Since (2.16) and (2.17) hold uniformly in k, by (2.15),

bk

f 2dt < 2e (2.18)

uniformly in k for large x. Hence (2.14), (2.17) and (2.18) imply

bk 2

lim f )Lr(t)u kdt f Xr(t)u2 dt
k+= a a

and

bk
u2d

lrn f k - f u'2dtk+w a a

Thus it remains to prove

bk Uklt) - u(t)

lim f f f(t,y)dydt f f f(t,y)dydt . (2.19)

kicea 0 a 0

From (1.46) and (F.4) we know

bi uk(t) -'bk Uklt - ut)

f f t(t,y)dydt 4 f f f(t,y)dydt
x 0 x0

Given c > 0, by Lenma 2.12, there exists an a, > a such that if

,. -.V ~ ~ ~ a5 W w%* ~ 9I%~. %% %$,'. |
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x Si

f J" f f(t,y)dydt < c •

\x 0

Hence, if x > su

bk U*k()
f f f(t,y)dydt < .

x 0

uniform in k. Since (2.14) implies
Sl1 ult) SI Uklt)

If f f(t,y)dydt - f f f(t,y)dydti < c
a 0 a 0

for large k. Therefore (2.19) follows from the standard 3e

argument.

Proof of Proposition 2.10

From (1.41.d), we can pick a b > a such that X > u1(a,b,0)

and hence, by Lemma 2.11, A±Ea,b] > 0 and A±-a,b 1] > 0 for all

b, > b. Therefore, by Lemma 2.13, A-[a,-] > 0.

The assertion A±[a,co] < +w follows from (2.9). Theorem 1.2 and

Lemma 2.12.

Now, we have an analogue of Hempel's result.

Proposition 2.20

Suppose (r.1), (F.I)-(F.4) are satisfied. Then A+[a,-] (resp.

A-(a,-]) is a differentiable function of a and
+

dA +dA2
-ia (resp. j-) = -(u'(a))

2  (2.21)
da da 

Uwhere u - V+(A,a,a.,0,.) (resp. V._).

I:¢m % r"/ :. . - ..- - ' '- ' % " . " -" . .;° " .- " ..-'-- ." -.. . "...' ".'.-. "..' ". . " -.-..
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Proof

Since their proofs are the same, only the case A+[a,m] will be

carried out. Let {bn} C (a,-) be an increasing sequence such that

limn = + and put
n+.

yn(x) AExb I for x c (O,bI]

Clearly, by (2.8.a),

Vnl(x) = -(V+(X,x,bn , O,x))2

and from Proposition 1.76, 9 are continuous on [O,b i]. It follows

from (1.47) that

for n = 1,2,3,... and for every x c [O,b1]. Let

V(x) - -(V'O(,x,c,O,x))2 . By Proposition 1.76, * is continuous and

li. (xn ) = *(x) . (2.22.b)
n N• n+CM,

It follows from Din Theorem (1261, Chap. 7), with the aid of (2.22.a)

and (2.22.b), that

+ * uniformly on [O,bl] . (2.22.c)

Put 9(x) = A+tx,]. Then an elementary theorem in Calculus (26],

Chap. 7) together with Lemma 2.13 and (2.22.c) implies

9 % uniformly on tO,b 1 ]

and

V'(x) - lim g(x) - *(x) . (2.22.d)
n+m

In particular, taking x - a, (2.22.d) gives (2.21).

We continue with the preliminary work needed for the proof of

Theorem 2.1.

61.
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Lemma 2.23

Assume (r.1), (F.1)-(F.5) are satisfied.

Let X > 0 and 0 4 a < b 4 +- be fixed. If c c (a,b) then

we have

A~a,c] + Atc,b] ( Ata,b] • (2.24)

Moreover, if A > V1(acO) or A > Uj1(cbO) inequality (2.27) is

strict.

Proof

Since e = 0 we suppress e from the notations, i.e. VI(a,$) =

Vj(a,8,0) and V+(Ae•z8,x) = V+(X,a,8,0,x). Also, for convenience we

adapt the notation that V+(X,,8,x) - 0 when X < ji(a,1.'

If A p1(ab), by (2.3.b), A[a,c] = A[c,b] = A[a,b] = 0.

Hence (2.24) trivially hold.

If only one of the inequalities A 4 p1 (ac), A 4 lil(cb) is

satisfied, say A 4 V1(ac), then by (2.3.b), Alac] = 0. Hence it

follows from (2.5.a) if b < +- and from (2.21) if b = +- that

b

A[c,b] =f (V 4(X,x,b,x))
2dx

C

C b
< f (V(X.,x,b,x)) 2dx + f (V..,.,x,b,x)) 2dx

a

b
- ] (V.+(,x, b , x ) ) 2 dx

a

- Aid,b]

Likewise Ala,c] < Ala,b] if X UI(c,b)

In the remaining case, both Ata,c] and Atc,b] are nonzero.

Again by (2.5.a) when b < +w and by (2.21) when b - + , we obtain



47

cAla,b) - A(c,b] f (V;(X,x,b,xll2dx (2.25)

a

and

C

A[a,c] f (V4(A,x,c,x))2dx
a

From (2.3.b), we know V(X,x,c,x) = 0 if A 4 ul(x,c). Hence there

is an E > 0 such that V(X,x,c,x) = 0 whenever x c - £,c] and

consequently we have

C-C

A[a,c] f' (V4(Xxcx))2dx ( (2.26)
a

From (1.47), we know, for x c ta,c - c)

(V;(X,x,b,x))2 > (V(X,x,cx))2 • (2.27)

Combining (2.25), (2.26) and (2.27), we conclude that

A~a,c] + AMc,b] < Ata,b]

Corollary 2.28

Assume (r.1), (F.I)-(F.5) are satisfied. Then

lim Ala,-] - 0 . (2.29)
a m

Proof

Let a ) 0. By Lemma 2.11 and Lemma 2.23, we have

0 4 Ala,-] Alax,-] - Aha,a]

for all a 4 a < +r. Letting a +4 and invoking Lemma 2.13, we

obtain (2.29).
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Remark 2.30

Without assuming (F.5) the same kind of technique used in the

proof of Corollary 2.7 shows that

lrm A-Ca,-] - 0

We are first going to prove Theorem 2.1 for the special case of .

e - 0. For fixed X > 0 and a > 0, we denote the function Gl(x)

by

Gj(x) = Ata,x] + A[x,m] (2.31)

for x c [a,-) and define Gl(+-) = lir G1 (x).

The function GI has the following properties.

Lemma 2.32

Suppose (r.1), (F.1)-(F.5) are satisfied. Then G1 is

continuously differentiable on [a,-) such that /4

Gl(+i ) - A~a,-] (2.33)

and

GC(x) [V (,X,a,x,O,xl]2 _ [V4lA,x,o,0,x)] 2  (2.34)
Proof

G 1  C1 (a,-) is an immediate consequence of Propositions 2.4,

2.20 and (2.31). Next, by Lemma 2.13 and Corollary 2.28, we have

(2.33). Finally (2.34) follows from (2.5.b) and (2.21).

We are now able to find a one-node solution for 9 0 in

(1..b). From now on until the end of Remark 2.51, we suppress the

S dependence in our notation.

%% V



Theorem 2.35

Suppose (r.1), (F.I)-(F.5) are satisfied. Let X > 0, a ) 0 be

given and 8 = 0 in (1.1.b) be fixed. Then S, 2 (X) and S

are nonempty.

Proof

By (1.4l.c), there is an c > 0 such that A 4 ul(a,x) for x c

[a,a + cl. Hence, by Lem.a 2.11 (i) and (2.31), Gl(a) = A~a,-3. From

Proposition 1.43 (i) and (2.34) we know Gi(x) = -[V4(X,x,,x)] 2 < 0

for x c [a,a + el. Furthermore, by (2.33), GI(+-) = Ata,-]. We

conclude that G1 must attain its infimum at some point

z e (a + c,-).

Next, we define

V+(X,a,zx), x c Ea,z]
u(x) (2.36)

V_ (X, Z ,, x ) (z, ) • "0II
We claim u C C [a,-). Obviously,

u(z) - V+(,a,z,z) = VCX,z,-,z) M 0

Since G'(z) - 0, by (2.34) and V+ = -V., we have

1rn u'(x) - V4.(X,a,z,z) = V.(X,z,-,z) = lim u'(x)

Finally, it can be easily checked that u(x) satisfies (M a .

Thus u c S+ 2 (A) and hence -u e S M."

Remark 2.37

The proof shows that, for given a > 0, G, attains its minimum

at an interior point of (a.-).

To obtain n-node solutions, more work is needed. Let a ; 0,

then for n c N we denot- the set An by
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An =(xl,x2 ... ,xn) a x, x 2  . n < +-M

Next, put x0 = a and xn+ 1 - +w. Then, for fixed Xk > 0, we define

the function Gn on An by

n+1 r-

Gn(xlx 2 , ...,x ) = A[xi.,x i] (2.38)i= 1

Lemma 2.39

Assume (r.1), (F.1)-(F.5) are satisfied. Then is

continuously differentiable on An and

3GaxGn (x1,x 2,?...,IXn) ' IV+( Xi j,Xi,0,xi)] 2

2

- [V4(X,xi,xi+ 1 '0xi)1 . (2.40)

Proof

It immediately follows from Propositions 2.4, 2.20 and (2.38).

Lemma 2.41 PP

Assume (r.1), (F.1)-(F.5) are satisfied. Let n > 1, then

(M) If x, = a, Gn(xl,x 2 ,...,x n ) = Gn_1(x 2 , ... xn

(ii) If xi = xi+ 1 , Gn(x1,X2,...,x n ) 
= Gn_1(x2,...,xilxi+2,---,Xn).

(Ii) If f(x1m),x2(m),..... Xn(m))} C An  is a sequence such that

lim xi(m) = zi < +- for 0 < i < k

and

rlir Xllm = + for k 4i n •

Then

{Gk l(z1z2,...zk1) if k > 1

iM n(x1(mlx2(m), ... , Xn(m) i k/^re,= t£ k ' .

' . . , *, V.hl I~ lI *II *INI I' .I . .i aI' . a . . . * . ' ,, ,,, ," . . ,$ .... ., *. : _, ,L--, * , "v " " '
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Proo f

By (1.41.c) and Lemma 2.11 (i), we have A[x,x] 0 for

x c [a,-). This together with (2.38) implies (i) and (i). To prove

(iii) we know that Proposition 2.4 implies

k-i k-1 -

lim [ Afxi-1(m),xi(m)] = A[i-1i.
m+m i=1 i=1,,

M+

where z0 = x0 (m) = a. Next, by Proposition 2.4 and Lemma 2.13-'

lrm A[xkl(m),xk(m)] = A[xk5l,.]

Thus, letting xn+I(m) = +o, it remains to prove U..

n+l

lim I Atxj_ 1(m),xi(m)] 
= 0 . (2.42) 'p

m = i=k+1

From Lemmas 2.11 and 2.23, it is easy to see that for all m C N

n+1 --
0 4 A[xi_1(m),xi(m)] 4 A[xi_ 1(m),-] • (2.43)

i-k+l ..

Letting m + +-, (2.42) follows from (2.43) and (2.29).

We are now ready to establish n-node sclutions for n > 2 in the

case e =0.

Theorem 2.44

Suppose (r.1), (F.1)-(F.5) are satisfied. Let X > 0 and

be given, then Sa n(X,0) and S;,n(X,0) are nonempty for

all nEW .

Proof

Por convenience, we suppress the 8 dependence from the

notation V+. Since Atxi.,xil ) 0 and at least one of them is

positive, we know

6*

WLa% %
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Gk(xl,x2,...,xk) > 0 for all (xlx 2 ,...,xk) c A k

and hence Inf Gk(xlx2,...,xk) exists.
A k

By an interior point of Ak, we mean a point (xl,x2,...,xk) C

Ak such that a < xj < x2 < *.. < xk < +c- We will show Gk attains

its global infimum at an interior point (zl,z2,...,zk) of Ak - ,

Assuming that for now and letting z0 = a and Zk+I = 4c", from

(2.40), we have, for i = 1,2,...,k, that

aGk

ax(zl,z 2, .. .12k) = _.(,.,zizi)]2 - V.(X,z,+z~+,)]
2  0

that is p.

V;(X'zi_,zi'zi)1 =zi,zi+,zi) ,  1,2,...,k . (2.45)

Also, note that if X 4 i 1(z_ 1,zj) for some j, let I > j be the

largest value such that X U1l(z£_,zl) and X > U1(zZ,zZ+1). But

this implies V4(x),zj£_1zZ,z) = 0 and V4(.,,z. 1 ,zg) # 0 which

contradicts (2.45). Thus X > 1(=i_1,zi) for i = 1,2,...,k + 1,

and if we put .

u(x) = (-) V +(X,zi,zi+ 1 ,x) for x c tzi,zi+i)

i - 0,1,2,...,k, then u c Cl[a,o) is the desired k-node solution

with nodes zl,z2,...,zk .

Thus it remains to show that Gk attains Its infimum at an

interior point (z1,z2,...,zk) of Ak. To achieve this goal it is I

sufficient to prove, by induction, the following statement: V
p.

If, for I < k < n - 1, '.

Gk attains its global minimum at an interior point of Ak (2.46.a)

and

5z



53

Min Gk(Xl,X2 .... xk) > Inf Gk+l(xlx 2 ... xk+l) (2.46.b)

A k A k+1

then these statements also hold for k = n.

It is clear, from Remark 2.37, that (2.46.a) holds for k = .

Also, if G, attains its global minimum at z c (a,-), then from

Lemma 2.23 there exists a t E (z,-) such that

Atz,t] + A[t,-] < A[z,=]

hence

Min GI(X) = G(z) = A[a,z] + A[z,=]

A1I

> A[a,z] + A[z,t] + Att,-]

, G2(zt) > Inf G2 (xlx 2 )
A2

which gives (2.46.b) for k = 1.

Next, if (2.46.a) and (2.46.b) hold for 1 4 k 4 n - I and

suppose (2.46.a) is false for k = n, then there exists a sequence

((S1(m),S 2(m) ... ,Sn(m))) C An such that

lim Si(m) = ti  (might be +-) 1 4 i 4 n (2.47)

and

Inf Gn(x 1 X21 ... x n ) " lim Gn(S(m),S2(m),...,Sn(m)) * (2.48)
A 1*

nSuppose tn < + . Then, letting t o0
. a, there exists 0 < j ( n - 1

such that

tj - tj+ 1

Hence, by Lemma 2.41 (i) or (ii), we have

Gn(tlt2 ... ,Itn) - n (t(...tj-l,tj+l,. .tn) (2.49)

From Lemma 2.39, (2.47) and tn < +-, we know

) 
. *



54

lim Gn(Sl(m),S 2(m),...,Sn(m)) =Gn(tlt2,...,t n ) * (2.50)

Applying the induction hypothesis and combining (2.48)-(2.50), this

leads to

Inf Gn < Min G = Inf Gn G (t1,...,tj-1tj+1,...,tn )

n n-1 n-i

Gn(tlt2, ... Itn) = lim Gn(S1 (m),...,Sn(m)) = Inf Gn
m+00 An

which is obviously absurd. If tn = +. Let 0 4 j ( n - I be the

largest value such that tj < +-. Suppose j > 0. By Lemma 2.41

(iii) we have

lim Gm(SI(m), .... ,(m)) = Gj(tl,...,t j ) •

Applying the induction hypothesis, we obtain the same sort of

contradiction. Thus it remains the case j = 0. In this case, by

Lemma 2.41 (iii)

lim Gn(S1(m),...,Sn(m)) = Ala,-]

From Lemma 2.23, there exists a z c (a,-) such that

% Ala,-] > Ata,z] + Atz,-] = G1(z) ; Inf G,
'% A1

-4
Thus,

Inf G n lim Gn(S1(m), .... Sn(m)) = Ala,-] > Inf G Min G,

"' A m+n A A1
n1

which is contrary to the induction hypothesis again.

Finally, arguing like the case k - 1, we can prove (2.46.b)

holds for k - n and this completes the proof.

• %



Remark 2.51

(a) Actually any critical point of Gn  gives a n-node solution.

However, if the n-node solution is unique (up to the sign) then

(Ziz 2,...,zn) must be the point at which the minimum of Gn

occurs where zZ 2,...,z n are nodes of the n-node solution.

(b) For fixed A > 0 and a > 0, let r, = A[a,-] and for n > 2,

r =Inf Gn_.. Then by (2.46)
A n

( r) r > *-* > rn > ... > 0

(ii) Let u be a solution of (I)a and

J(u) f Ar(x)u 2 (x) - (u'(x))2 - 2 f U(Xfx,y)dydx

a 0

If J(u) < r. theft u has at least n interior zeroes

in (a,-).

Next, with the aid of Proposition 1.76, we know

(iii) rn are continuous functions of A and a.

Moreover, it is not difficult to prove, from Proposition 2.20,

Corollaries 1.17 and 1.45, that

(iv) For fixed a > 0, rn are increasing functions of A and

for fixed A ) 0, rn are decreasing functions of a.

To complete the proof of Theorem 2.1 for the case 0 < 0 1- we
2

need the following technical lemma.

Lemma 2.52

Assume (r.1) and (F.I)-(F.4) are satisfied. Let 0 4 x0 < x, <

a.g < x n < xn+ I . Suppose xn+ I < +- (resp. - im). Let T be a

function defined by

a %
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r+ if n Is odd
t~n) -~(2.53)

if n is even

and V(n(,a~b,B,9) be the positive or negative (depending on

T(n)) solution as mentioned in Remark 1.6 (b). For fixed 6,

0 4 el j suppose X > Ul(x 01x1..81) and X > Max lxxiO

(resp. Max ul1(xi,xi+lIO)) where ulz(a,b,B) was defined as in
1(i~n-l

(1.39) and (1.40). Suppose for 2 4 i < n

IVT,(i)(X,xi-i,xiiOwxi)i lV.,(j+1)(XlxIx1 +1 IO~xi)j (2.54)

and

Then there exist t0 < tl < t2 < <. tn+1 0 tO x= tn0, xn1

such that

(U) ti C xj, 1 4 1 4 (2.56)

(i) V()(X,t,tpel,t1)1 1 V.T( 2 )(At 1 t 2 ,0,t1)1 (2.57)

and for 2 4 i 4 n

IV! 1(i)cX,ti..,ti,O,ti)1 = IVT,(i+l)(Xfti,ti+ ,OstQil (2.58)

1-t8 - 0 (2.59)

if (r+I 0 (2.60)

Xv > VI(to0 1 ,61) and X > Max pj(t4#ti+j,O) (resp.

Max P.'lti~ti+i,UhI. (2.61) .

1(i~n-l

Moreover, if r(j) is replaced by 'r(j + 1) wherever r(j) appeared

in the above statement the results still hold.

-----~**p----------- V *p. V-.
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Remark 2.62

In view of the definition of T, if we define

(VT(1)(.,to,tl,e,x) for x c [tort 1 )V ( x) j ( 2.63)

IVT(i+1)(X,ti,ti+l,O,x) for x E [ti,ti+I) 1 1 i n
S+

and let a = to, b = tn+1  then v C Sabn+1(XO) (resp.
+

Sa +1(,)) in the T(j) case and v C Sb+1(X,8) (resp.

San+I(Xe)) in the T(j + 1) case.

Proof

Since 8i is considered fixed, we will suppress 01 as well as

0 from our notation when there is no confusion.

The proof will proceed by induction. We first look at the case

n - 1. For given x0 and x2, we define functions p+ and p-

with domain (x0,x 2 ) by

P+(x) = [v+'{,x 0 ,x,8e,x )] - [V4(,x,x2 ,0,x)]
2  (2.64)

where, for convenience, we adapt the notation V+(X,a,bB,x) - 0

whenever X 4 P1 (a,b,8). Then it is clear, from Proposition 1.76,

that p+ and p- are continuous on (x0,x2). From the hypothesis

(2.55), we know p +(x) ; 0. From (1.41.c) and Proposition 1.43 (i),

we know, for x near x0 , that

SP+(x) = -[I(XXx 2 ,x)] 2 < 0

Therefore, there is a t I j (x0 ,xl] such that

p+(t 1 ) - 0 • (2.65)

Letting to x0 and t2 . x2 this yields (2.56). Combining (2.64)

with (2.65), we obtain (2.57).

Supppose x2 < +-. Now tI 4 x, and since U1(ab,8) is a

decreasing function of b for a and 0 fixed, we have

V..
* *'4%*• %%' ' ,-- - -v , .- .5 -.. -.-. -



) > Iz1(tlt 2) and hence

IV..l(,tlt 2 ,tl)I > 0

Combining this inequality with (2.57), we have

IV4(X,to,t ,tl)f > 0 . (2.66)

If X 4 ul(t 0 ,tl) the only solution for (I)t0,tj would be the trivial

solution which is contrary to (2.66). Thus X > U 1(tO,t1) giving

(2.61) if x2 < +-.

If x2 = +=, IVl(l,t 1i,tl)I > 0. Consequently the same argument

as above shows X > 1j(t 0 ,tj). Thus we have (2.61) even if x 2 
= +-.

Equation (2.58) is void for n = 1. Inequalities (2.59) and

(2.60) easily follow from (2.56), (1.47) and (1.49). Thus, with an

analogous treatment of p-(x) which corresponds to the T(j + 1)

case we complete the case of n = 1.

Suppose the result holds for n = k - 1. We are going to prove

that it is true for n - k. Granted that (2.56)-(2.58) are true, we

can verify (2.59)-(2.61) by the same reasoning as in the case n = 1.

Thus, it remains to show (2.56)-(2.58).

First, by applying the induction hypothesis to k + 1 ordered

points (x0,xl,...,xk), we get k + I ordered points (s0,s1,...,s k )

with the corresponding (2.56)-(2.60) as follows

SO - xO, sk w xk and si r xi for 1 4 i < k - 1,

;( ,'si_1,si'si)j I- Iv;(i+l)(X,si,si+1,si)l 1 < i k - 1 (2.67)

NV(1)(X'sOSlSO) < jV4(1)(A'xO'xl'xO)j

From the hypothesis (2.54) and (2.68), we have

I V1.kt~k..sks~ I.k (Xlxkfxk+1,xk)f (2.69)

4~)Xs-1ks) )I4Tkl
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Put Sk+1 = Xk+1. If equality occurs in (2.69), we have the n = k

case. If (2.69) is not an equality, from (2.67) and (2.69), we can

apply the induction hypothesis to (sl,s2,...,sk+1) and obtain

(s,....,Sk+1) with the corresponding (2.56)-(2.60) as follows

s; = Sl s +1 =Sk+ and s' 4 si for 2 < i < k (2.70)

lV (i)(Avs~i,~si) = J i+)(X~s+1, s,)I 2 e i < k (2.71)

11';(2)1(,,si,s1 ,sP)l , IV;(2)(X,,sl,s2,sl)l (2.72)

1V!k+1(X~k~s+11A+1J >!V;~(k+1)(Xsk'sk+1,sk+1fl

if xk+ < 4 . (2.73)

Thus, it follows from the case i = I of (2.67) and (2.72), that

iV;( 2 )(A,si,sIsi)f 4 1V.l)(A,sO~ss)1 • (2.74)

Put S6 = so. Again if equality occurs in (2.74) we are finished;

otherwise we repeat the same process on (s6,si,...,s ). Continuing

in this fashion, we define ordered k + 2 tuples of points, (xi),

(si), (si.) etc. Either this process terminates in finitely many

steps and hence we complete the proof or we have a sequence of k + 2

ordered points ((Tm'(0),Tm(1),...,Tm(k + ))1, such that

TM(O) - Tm+1(0), Tm(k + 1) = Tm+l(k + 1) and Tm(i + 1) 4 Tm1(i)

for 1 4 i < k and for all m , (2.75)

1V-'(1)(X'Tz:* (o),zm+1(1), +11o))1 4 1VT(1)llO, 1, ))•

+ 1),Tm+l(k + 1)1

)0 IV(k+l)(,T(k),Tm (k + 1),Tm+l(k + 1)1 if xk+ <

and if m is odd

Jv;( .)(x, M(i - 1),' 1i),' 1i))1- lv.(i+i)(X,T'(i),TM(i + 1),TM(i))l

for 1 1 i k -1 (2.76)

and if m is even
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V. ,, - 1),(i)±),,e(i)) 1 = IV ) +1)(X'Tm(i),T(i + 1),.,(i)).

for 2 4 i < k . (2.77)

Since (2.75) tells us that for fixed 0 4 1 k + 1, {Tm(i)} are

monotone nonincreasing sequences and bounded below by x0. Thus

lim Tm (i) = ti exists for 0 4i k + 1
m C*

passing to the limit in (2.75)-(2.77), we get (2.56)-(2.58) for the

case n = k. The same argument takes care of the T(j + 1) case. we

omit it.

Completion of the proof of Theorem 2.1

Since positive and negative solutions have already been

constructed in Theorem 1.2, we only need to consider n ; 2. Also,

the proof of the case of Sa+ (6,) is the same as that of

Sa,n(X,e), so only the first one will be carried out.

By Theorem 2.44, we can pick a u C Sa+n(X,0). Let

XIx 2 ,*...Xn_.1 be the nodes of u and put x0 = a, xk+l - +-, then

it is clear that

u(x) = T(i)(Xxi_1IxiIO,x) for x c [xi-j,xi]V, 1 < i < n

By (1.37), we have, for 0 < 8 1 <-!, that

lV.(A,xo,x,,el,xl)l > .IV4X,xo,x1,O,xl)l . (2.79)

Since

IV,(A,xo,xi,o,x,)l = Iu(xl)l = IV!(X,XlX 2 ,,x)I •

Combining this with (2.79) we get

IV (),xo,x 1,el xi)l Iv(.,xI,x2,o,I.)• (2.80)
I,_

-4
P % ,". . %..°o -, - .% % .. .. .- . . ... . . . . . . . . . .
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Now, looking at VT(1)(X,xOx1OO1,), V (i)(X,xi_lxi#O,.), 2 1 n

and with the inequality (2.80), we satisfy the hypothesis of Lemma

2.52 from which the required (n - 1)-node solution follows.

.NO

N!

• 1*

I!



13. EXISTENCE OF SOLUTIONS WITH A PRESCRIBED NUMBER OF NODES WHEN THE

NONLINEARITY IS ODD ONLY NEAR ZERO

The goal of this section is to give an existence result for nodal

solutions of problem (I)a under weaker assumptions than earlier. From

Theorems 1.2 and 1.5, we already know that, for every A > 0, there I

exist a unique positive and a unique negative solution. However, we

have left open the question of whether or not there exist solutions

with nodes without assuming (F.5). We will give an affirmative answer

here, provided F(x,y) is symmetric in a neighborhood of

(x,y) = (+-,0) in the xy-plane, that is,

(F.5)' There are positive numbers 6 and X such that

F(x,-y) = F(x,y) for x 6 [X,,=) and lyl - 6.

Theorem 3.1

Assume (r.1), (F.1)-(F.4) and (F.5)' are satisfied. Let X > 0,

a ) 0 and 0 4 8 4 1 be given, then Sa,n ) and Sa,n(;,) are '5

nonempty for all n c N.

Proof i

Suppose u is a solution of (I) . By Corollary 1.72

mum 4 K3(x,.)*L [cs,e)

From (1.75.b), we can find an a, > X such that K3 (X,a1 ) < 6-

Bence u is a solution of (I) if and only if it is a solution of
a1

the problem

62
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-U" (Xr(x) -H(X,U))u, ali < x < +W (3-2.a)

U(01)cosB - ul(al)sinO = 0, u E L2 [(I1 ,c) (3-2.b)

where tiie function H is defined by

H(xy) if y > O, x )0

IFXY)if y <O, x 0

By Theorem 2.1, S + (,e) 0and S (,8 0 for all n and
nl, C+ r

0 4 9 4 1L. Pick a u E S+ (,0) and let .. z_ be its

nodes. Then it is clear that

U(X) = V Ti)0XrZi...lzi1OX) for x c [zji,zi I( , n

where =o a, and Zn ' .By (1.49)

* IV.;.A),a 1 ,z11O~zjfl 4 1V(X,ajzi#,zj)I *(3.3)

From (1.37), we have, for 0 (B that

IV(~az'OzI)I (+IXa~l,~.2( 34

Combining (3.3) with (3.4) we get

IV;AXsapz,ziFl~j~ V' .X,aez 11e,zl~f

Since V4(X,c 1 1z,,zi) = V!(x,z 1 1 z2 1 ,z 1 ),

I.!Ai,I,,zj)I 4 *IXaz~ez ~ 3S

Let x.- a and xi= zj, 1 i 1 4 n. Now, looking at

VT(I)(X,xO,xlfe,*), VT(i)(X,xi..,xi,O,e), 2 4 i 4 n, and with the

inequality (3.5) we satisfy the hypothesis of Lemma 2.52 from which we

obtain the required solution in Sa (XO)

S;,(Ale) can be treated similarly. This completes the proof.7
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§4. UNIQUENESS OF SOLUTIONS WITH A PRESCRIBED NUMBER OF NODES

In this section, we will use a shooting argument to prove

uniqueness results for solutions with a prescribed number of nodes,

that is, for given X > 0, a > 0 (and b > a in the bounded domain

cases) Sa,n(X) (resp. Sa+ as well as Sa,n () (resp.

a ()) contains at most one element (see Theorems 4.6, 4.7).a ,bn

Note that the existence of multiple node solutions has already been

established in Theorems 2.1 and 3.1. Now uniqueness will be proved

for a subclass of such problem. However, the symmetricity assumption

(F.5) or (F.5)' will not be assumed. To do so, we consider the

following initial value problems

-u"(x) = Ar(x)u(x) - f(x,u(x)), a < x < +- , (4.1.a)

u(a) = 0, u'(a) = if 8 = 0 in (1.2)
(4.1.b)

u(a) = E, u'(a) = * cotO if 0 < 8 4 1 in (1.2) •
2 .

It is assumed that

(f.2) f(x,y) is continuously differentiable in [U,-) x R.

A is the eigenvalue parameter. Given a, A, 0 and there is a

unique solution Ua(X,E,O,o) of (4.1) which is understood to be

extended to its maximal interval of definition. Clearly Ua(AX,,8,X)

is of class C1 in all of its arguments. Assuming (F.3), we have

Ua(AO,0,x) = 0 and for g 0 0 C

U(A,,,-) + Ua2 (A,,8, -) > 0 ( (4.2)

We will assume r(x) > 0, F(x,y) > 0 and 0 <8 !
-  Therefore2"

if A < 0, by (4.1.b) U; U. ) 0. From (4.1.b), we know if j 0,

64
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U9 > 0 for x C (a,a + c) and so: C > 0. Thus, if Ua > 0

for x c (a,a + c) then "a' > 0 and -a > 0 in (a,a + c). Hence

Ua and Ua are nondecreasing and never vanish in (a,-). An

analogous argument shows Ua cannot equal zero in (a,-) either if

Ua < 0 in (a,a + £). So we will be only interested in X > 0. Let

+0 (resp. D) {(X, )IX > 0, > 0 (resp. < 0)}.

For fixed 0 4 0 4 let D ,n() (resp. Da,n()), n > 1, be the
set of (X'd) c VO (resp. D-) such that U(Xg,8,.) has at

V0 ua',, hst

least n zeroes in (a,-). Ordering these zeroes as an increasing

sequence

a < Za,l(X, I6) < za,2(XIE,) < .. < Za,n(Xi,8) < ...

we obtain functions Zan (n = 1,2,...) such that for fixed

0 4 94 and for every integer n. Zan is defined on Dn (9)
2 a,n n

(resp. D,n(8)). Given (X,E) c Va'n(8) (resp. V;n(e)),

X - za,n(A,,e) solves the equation Ua(XE,8,x) = 0. -From (4.2),

U'(lp,8,x) Y 0 when x = zan(t, ,8). Hence, by implicit function

theorem there is a neighborhood 01 of (X,) on which Za,n is of

class C in its arguments and there exists a maximal open set 0
+ ()

containing 01 such that Za,n is so on 0. Since D, (a)za~n a n

(resp. Da,n(e)) is the union of those components 0 it is an open

set. For fixed X > 0, we denote

D+(A,) (resp. Da,n(L,.)) = , D,n(8) (resp. V,n(8))}

Then it is easy to see that

DI (Ae) J D± n AB) (4.3)a,n(Ae DDaen+l ")

We will use the above notation in the next section. Now,

throughout this section unless otherwise stated, we assume r(x)

",..T +-.T. .. ,,., % ",. .- ,,-,... .'" '' .,''" " ' ++" . +.' ," .'+" ',+ . .'- '- '. " .- '. "- '.,'. " ". ".".. ". ." . -. . " . . . . . "
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satisfies

(r.2) r(x) = 1, 0 4 x <

and focus on the special nonlinearity which satisfies

(P.6) There are 142 C C ([0)'01))' (0 ) =  2(0 ) = 0, p a,

> 0 in (0,w), and a positive number a such that

F~x~y = * (w~x) lyl')' Y > 0, x C [0,-)
[ 2 w(x)Jyvj ), y < 0, x C [0,-)

where we C1 ([O,-),(0,)).

Furthermore, we list several assumptions related to the functions

, and w

(i.I) There are positive numbers P1, P2 , q, and q2 such that

*I~ t ) > PI - t and 42 (t) > P2 * 
q 2 for t c [0,-).

(*.2) =

(*.3) lim i 1 (t) = lim 42 (t) =
t+CG t+CD

(w.1) - is nondecreasing on [0,-).
w

(N.2) There exists a b c [0,-) such that w'(b) > 0.

Remark 4.4
,

Hypotheses (w.1) together with (w.2) imply w grows

exponentially on [b,=). Hence f w 2 /ldx < + is clearly satisfied
0

and it is easy to check that assumptions (F.6), (4.l), (w.1) and (w.2)

are stronger than (F.1)-(F.4).

Thus equation (4.1.a) becomes

Xu - *,(w(x)lull)u if U > 0-uN (4.5)
- 2(w(x)IuIa)u if u < 0

3.u

S



ON--

67

Our first main goal is to prove the following uniqueness results:

Theorem 4.6

Assume (r.2), (F.6), (4.3) and (w.1) are satisfied. Let

b > a > 0 and n E N. If X > 9n(a,b,0), S- bn(X,O) has a unique

element. If 0 < 0 < !, X > u (a,b,8) and w'(a) > 0 then
4.

S+bn(X,e) has a unique element.

Theorem 4.7

Assume (r.2), (F.6), (4.1), (w.1) and (N.2) are satisfied. Let
+W

a > 0 and n C N. Then, for every X > 0, S±  (X,) contains ata,n( 0 otisa

most one element. If w'(a) > 0, S (X,B) contains at most onea, n

element for all 0 e 6 .
2

Remark 4.8

(a) If case 0 < 6 <-1, the need for the extra assumption w'(a) > 0

will be seen in the proof. It is worth pointing out that

Corollary 1.45 (v) has the same sort of assumption and will be

used in the proof.

(b) Combining Theorem 4.7 with Theorem 2.1, we have

Corollary 4.9

Assume (r.2), (F.6), (*.1), (*.2), (w.1) and (w.2) are satisfied.

Let a o 0 and n c N. Then for every A > 0, S+ ( ,O ) has a
an

unique element. If wl(a) > 0, S ,(X,e) has a unique element for

all 0 < e <.
2

Proof
U,

From Remark 4.4, we know the hypotheses of Theorem 2.1 are

satisfied. Thus the result simply follows from Theorems 2.1 and 4.7.

c.2.
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Our second goal in this section is to prove a bifurcation

result. Note that for the case of bounded intervals the existence of

continua of solutions bifurcating from the eigenvalues of the

linearized problem is known for a wide class of nonlinear Strum-

Liouville eigenvalue problems (e.g. see (24], [37]). For our setting,

Theorem 4.6 shows that these continua are actually differentiable

curves in the Banach space R x C2[a,b]. Heinz [7] has a result in

this spirit. However, our result is applicable to more general

nonlinearities and boundary conditions.

Theorem 4.10

Assume the hypotheses of Theorem 4.6 are satisfied. Let

0 e < be fixed. Then, for each n c N, (I)ab possesses two C'-
2 I...

curves of solutions C+ and C; in R x C2 [a,b), where
nn

+ :tei'
C { ,4(X))IX > Pn} U [(Un,O)l and un() C Sa,b,n(X,), 1n

being defined in (1.41).

For the unbounded interval case, we also generalize Heinz's p

result [1

Theorem 4-11

Assume the hypothesis of Corollary 4.9 are satisfied. Let

0 ( C be fixed. Let E be the Banach space HI[a,) n L[a,).
2

Then, for each n c N, (I) possesses two curves of solutions Ca Cn

and C in R x E, with C- - {(X,u±(X))J)l > 0) U ((0,0)) and

U 1(X1 C Sa,n (,8).

We need some preliminary work to prove Theorems 4.6 and 4.7.

.e

.

,I

P
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Proposition 4.12

Let I > 0 and a > 0 be fixed. Assume (r.2), (F.6), (w.1),

(0.3) are satisfied and if 0 < 8 < 2' then w'(a) > 0. Then, for

every integer n > 1, there exists a positive number n0:6)

(resp. negative number Qa,n(XG)) such that

n(X,O) = (0,Qa+n(1,9)) (resp. D-,n(1X,) = (a-n 8)0

Moreover, in (On (X,O) (resp. (Qa,n(Xe),0)) we have

aza,n
(i) - > 0 (resp. < 0) (4.13)

and

(ii) lir Za,n(X,,) = . (4.14)
Ej±a,nlX0

Remark 4.15

(a) When X, 0, or a is considered fixed, we suppress it from our

notation 9n and D+.

(b) If (0.2) is satisfied, it is clear that oP = -Q." In this

+
case, we use the notation n instead ofn

+ +
(c) It is also clear from Proposition 4.12 and (4.3), that Qn+1 < an

and ln+ • n

(d) a+ (resp. a-) could be +- (resp. -w). For instance, takingn) n

w(x) c (a positive constant) then it can be shown that an+

(resp. fn) = (resp. --c) for all n > I.

Since a, X and 8 are considered fixed in Proposition 4.12,

they will be suppressed from some of our notation, that is,

Zn(V- za,n(N,&,O) ,

u( ,.) - ua(X,,,-),i

I '
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n Da,n(XIO) •

We define

U(,x) (4.16)

for x > a such that U(E,x) is defined. As is well-known [35],

y( ,o) then is the unique solution of the initial value problem

[- ,.,€.w,€) ju( ,) Ia') - oa cwcx)Iu(€,x))°wc:x)u(¢,x)fC]9

if U > 0 (4.17.a)

S- ,2(w(x)ju ,x)Ija) - a!(W(x)IU(,x)IO)w(X)Iu(,x)Io]

if U < 0

0|a) = 0, 9 '(a) = 1 if 9 0
(4. 17 .b)

p(a) = 1, q,'(a) - cot@ if 0 < e 24__
2

and

usa

' = U' .(4.18) *5
Next, we introduce two auxiliary quantities O(E,x) and

Y(,)by

- T'U - U'T , (4.19.a)

T -'U' - U"T • (4.19.b)

It is easy to check from (4.5) and (4.17.a) that

G*,(wUIa)wUaU? if U : 0

0' - (4.20.a) a

II

,*!(wl,.,l)wlulaU9 if ,. < o ;

and ,

- w 0 (4.20.b)
-, ,(,., Uja),,'l..lo 9 if ,.. < o

Moreover, from (4.19), (4.1.b) and (4.17.b), we have

#(&,a) 0 for all 0 4.21.a)

"

, -p -Yf,, .P P
4

''_ . %\. , .a. \~ I __*~ __ % a.' ' '_ ' 'S % ,. . .* . -
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2if e o

Y(F,a) =j- i 0 (4.21.b)
2"

Now, we prove several lemas.

Lemma 4.22

Suppose (r.2), (F.6) and (w.1) are satisfied. Then as a function

of x, there is a zero of U( ,-) between any two zeroes of ,

Proof

'"his immediately follows from the Sturm Comparison Theorem by

comparing equations (4.5) and (4.17.a).

Lemma 4.23

Assne (r.2), (F.6), (w.1) are satisfied and suppose wt(x) > 0

for x c [a,-). Let 0 < 6 < I be fixed. If D c D (resp. D)
211

then U"( ,a) < C.

Proof

Let b = zl(&), the first zero of U(E,.). By Theorem 1.5 0

U(E,x) - V+(A,a,b,x) for x c [a,b]. Thus, by Remark 1.55 (a), (b),

we have the lemma provided that the hypotheses imposed there are

satisfied. It is easy to see that all of these assumptions except for .

(F.2) are satisfied. However, from Proposition 1.43 and Remark 1.44,

we know V+(X,a,b,B,.) exists for every b < +w such that

X > U 1(a,bG), e 0 [0, W]. So we have completed the proof.

Lemma 4.26

Assume (r.2), (F.6) and (w.1) are satisfied. Let 0 < 8 C - be
2

fixed. If U(&,.) has its first zero at zI. Then T(E,x) 1 0

for x E [a,z 1].
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Proof

If not, let n > F > 0. Then * • is also a solution of

equation (4.17.a) and 91(a) - n, V(a) = n * cote. Put v =

Since V1(a) =n > & = v(a) and T, has a zero in [a,zl] there

exists an x, such that q1(xl) = v(x1) and

91(x) > v(x) > 0 for x c (a,xj)

Thus

qllx )  < v'(x) •

Let 0 as defined in (4.19.a). Since from (4.20.a) and the

hypothesis $ > 0, ' > 0 in [a,xj), we have

§(.,xl) > (4.27)

On the other hand, by (4.19.a)

% ( ,l1= (p'( ,Xl)U( ,x 1 ) - U1'(.r,x) p( ,x)

.2.. I [(xl)v(xl) - v(x 1 )pj1 (x)1]

Combining this with qI,(xi) = v(x1 ) > 0 and fl(xj) 4 v'(x I) we

obtain
II'

0

This together with (4.21.a) contradicts (4.27). The case E < 0 can

4 be treated similarly.

Proposition 4.28

Suppose (r.2), (F.6) and (w.1) are satisfied. Let A > 0 and

0 4 6 4 W be fixed. Suppose c Dn (resp. D;) for some integer
2 ni

n N I, and assume

U'(zk)V(z k ) < 0 (resp. > 0) (4.29)

for k - 1,2,...,n (where zk - zk(&)), then for any > > zn such

that U(x)g(x) # 0 for zn < x < we have
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Y(>) ) T(a) + 01(1 n, (4.30)

- 4 
,(z)

(resp. T C T (a) + n )
4(i) -O(z

n

where 'y(^)= () etc.

Proof

We only carry out the case of C Dn+  Let z0  a and

Ik = (zklzk), k - 1,2,...,n. Suppose first 6 = 0. Since

9(a) = 0, Lemma 4.22 shows 9 cannot vanish in Ii. If 0 < 8 <

Lemma 4.26 implies ip # 0 in .1 either. Moreover, for all

0 < 2 if k > 2 the interval I contains at most one zero of

y. From (4.29), we know q changes sign in each Ik for k > 2.

Also note that M 0 in (znU) by hypothesis. Thus 9 has

exactly n- 1 zeroes slS2,.. ,n I in (a,q) and sk E Ik+1 for

1 4 k < n - 1. Define points xOx1,...,X 2n by

X0 -a

X2n -

X2kI Zk I < k n

X2k -sk, I k < n- 1

Then clearly x 1,... ,x2n 1 are the first 2n zeroes of U 9 r, in

their natural order, in (a, ).

It is easy to check that

(Xl) > 0 for 1 4 i 4 2n - 1 ( (4.31)

Indeed, for odd J, this follows from (4.19.a) and (4.29). For

even J, say j - 2k, this due to the sign of U in 1 k+1 and the

sign of p'at sk : both are (lk

C Ij[o *o
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Next, set p(x) = w'(x)/w(x) for x > a. Since U • 9 and

consequently 0' does not change sign in (xj_ 1,xj), by the Mean

Value Theorem there exists tj c (xj_ 1,xj ) such that

xj x

f p(x)O (x)dx p(ti) f 0(x)dx, 1 ( j 2n . (4.32)
1 x j

From (4.20), p ' = -af', which, together with (4.32), leads to

a[?(xj) - T(xj-l)] = -p(tj)[(xj) - I(xj_1)], 1 4 j 4 2n . (4.33)

Summing up from j = 1 to 2n yields

2n
oa[(x) - T(a)] = - I- 4(xi- 1)]

2n-1
- -§(x)p(t 2n) + V(a)p(t ) + I V (.)[P(tj+1)-P(t •

2n1

By hypothesis (w.1) and (4.31), (4.21.a)

a(T() - '(a)] > -V()p(t2 ) •

Finally, to obtain (4.30), we use (4.33) to eliminate p(t2n) '',

from the last inequality. We can do so since 0' does not vanish

in (x2n_1;*)•

Lemma 4.34

Assume (r.2), (F.6) and (*.3) are satisfied.

Let = Min w(x) and c -12/ /- ( /

xc[a,b]

If v is a solution of (1 )a,b then

iLa[a,b] 4 c (4.35.a)

and

Iv'I el b /C • c • (4.35.b)
L [a,b]

~~~ %~ %S~

%;i



75

Proof

Suppose v attains a positive maximum at s c (ab). Then

vw(s)/v(s) < 0. Now due to the hypotheses, equation (1.4.a) should be

read as (4.5) which implies that

- *1(w(s)fv(s) to) ) 0

and hence

In view of the boundary conditions (1.4.b), we know the only way

that v could attain its maximum at a boundary point occurs at x = a

and when 6 = -. In this case u'(a) = 0 and u"(a) e 0. Thus, the
2

same argument as above shows (4.36) holds at s - a. Therefore, we

have

v(x) < (X)/w)7/C for all x e [a,b.

A similar argument for negative minima of v yields

v(x) -( Ila/ )/a for all x c Ca,b.

Thus (4.35.a) follows. Combining (1.65) with (4-35.a), we get

(4.35.b).

For the next result, we suppress the dependence of a and e

from our notation.

Proposition 4.37

Suppose (r.1) and (f.2) are satisfied. Let a > 0 and
(rs.D n ) such

be fixed. Let n c N and (k'k) n (resp. V n
2n

that lin (Xk,k) E) c D+ 3D+  (resp. D- n) then
k+-n"

lim Zn(Xk,Ek) "
km
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Proof
'.°

Suppose this were false, there would exist a b C (a,ao) such

that, by passing to a subsequence if necessary, zn(Xk, k) converges

to b as k + w. By the continuous dependence of the solution on

", parameters
1£

I [a,b,
U(Xk,k,.) c U,,b•

Since & # 0, U(X,E,-) cannot be the trivial solution and hence can

only have simple zeroes. Therefore UIX, ,o) must have at least n
+

zeroes in (a,-). This implies (A,g) c Dn (resp. D- ) whichn n

contradicts that Dn (resp. D-) is open.n n

Proposition 4.38

Suppose (r.1), (f.2) and (F.3) are satisfied. Let a > 0 and

0 4 e Z be fixed. Let [_,1) be a compact subinterval of (0,-).
2

Let bk = bk(X) c R be such that Uk(a,a + bk,8) = A. Then, for

every n c N, if b > bn(), there exists a positive number

n Cn(AA'b) such that if 0 < leI < e and X £ [x, ], Ua(XFo}

has at least n zeroes in (a,b). Moreover

Na
lum Zan(X,C) = a + bn(;)

a' Proof

Let v, - Ua(,, ) for & > 0, then v,, is the

solution of the initial value problem

- EXr(x) - F(x,Ua(,E,,x))Iv , (4.40.a)

v(a) 0, v'(a) - if 8 - 0,
(4.40.b)

v(a) - 1, vl(a) -cotO if 0 < 0 (4.40.b

2

Next, let vA be the solution of differential equationa
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- Xr(x)v

together with initial conditions (4.40.b). Then it follows from the

assumption (F.3) and the basic theory of initial value problems [35]

that

lim v, = vXI o0 K

and

lim 't vi

uniformly on compact subsets of [CX,x)IX > 0, x > a}. Pick

b > b n(). Since Un(a,.,e) is a decreasing function, b > bn(X)

for X c [X,11. Thus, there is an en = Cn(- XXtb) such that for

0 < E < Cn and X c (,] the function vx, is defined and has at

least n zeroes in (a,b). Moreover, the first n zeroes of vA,9

tend to those of vX as E b 0.

The case -en < < 0 can be treated similarly.

Now we are ready to verify Proposition 4.12.

Proof of Proposition 4.12

We only verify the result for Dn - Recall that was defined

in (4.16). Suppose, for every E c D+

9( ,Zn( ))/U'( ,Zn( )) < 0 (4.41)

then the equation U(&,Zn( )) = 0 yields

n n (4.42) A.Ctu'(EZ n( )

and hence (4.13) immediately follows from (4.41).

Next, we prove (4.41) by induction on n. By (4.17.b) and Lemma

4.22 in case of e - 0, or Lemma 4.26 otherwise, we know
LYP

~A. ~A .. . . . . . .. .
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y( ,z1 ( )) > 0. This together with U'(g,z1 (g)) < 0 implies (4.41)

holds for n = 1.

Suppose, for n > 2, that (4.41) is established for all indices

up to n - I and suppose there exists a go c D + such that

V(C0,zn(E0)) = 0. Then, by Lemma 4.22, 9(E 0,x) 4 0 for

x c (zn_1(E0),zn(E0 )). Using the induction hypothesis, (4.29) holds

for 1 4 k 4 n - 1. Thus applying Proposition 4.28, we get

~~1(£) - (n 1

V('X) > T(a) + n(-1

t( ) - (Zn -1

Letting X = zn(0) and using the fact that 4(E0,zn(g0)) 0 we

obtain

Vg O,Zn(gO)) > T(Co,a) .(4.43)

In case of 8 = 0, by (4.21.b)

y(gOa) = go > 0

If 0 < e 9 1 by (4.21.b)

*(C0 ,a) = g0cot
26 - U"(E,a)

Since w'(a) > 0 and w(x) > 0 for x > a, by hypothesis (w.1),

w'(x) 0 for x > a. Thus applying Lemma 4.23, we have U"(E,a) < 0

and consequently

T(g0,a) > 0

Thus, in all situations 0 < < , f(C0,a) > 0 and hence, by (4.43),

(Ozn(&O)) > 0 (4.44)

On the other hand, we know zn(&O) is the n-th zero of U(&0,.)

and the (n - 1)-th zero of V(E0 ,-) in (a,-*). By (4.1.b) and
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(4.17.b), it is easy to check that T(&,zn(&O)) = '(&Ozn( 0)) I

U'(C0,zn(r) ) is negative. But this is contrary to (4.44). Thus,

+
there is no 0 c D. such that 9(OIszn(&O)) = 0 and consequently

T(EZn(&))/U'(&,zn(M) is of constant sign on each connected

+component of Dn.

Suppose there is a nonempty connected component C of D onn

which the sign is positive. Then it follows from (4.42) that the

function zn is monotonically decreasing on C and hence choosing

E, c C and setting b = zn(El) we have zn(E) 4 b for every

c C n Since C n [ I,,) is a nonempty connected open set

it must be an interval [ I"V 2), &2 4 +" Suppose &2 < -"By

Proposition 4.37

lm Zn() = +

C+E2

which is contrar-y to that zn(&) 4 b for all C C [&1, 2). Hence
C2 +co and [&,,-) C C. Let v,(x) = U( ,x) for x c [a,zn(n)].

Then, by Lemma 4.34 and zn() 4 b for I v [ Ic), v a (
L [a,Zn()

are uniformly bounded. This contradicts to vi(a) E,. Therefore

(4.41) holds on all of Dn.

Now we are going to show D+ contains only one connectedn

component. Suppose (nI'n 2 ) is a connected component of D by
n

(4.13) we know that

lira Zn(E) - Inf Zn(E)
C+nl (nl*n2)

On the other hand, if "1' 0 it follows from Proposition 4.37 that

A,

• :1.
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lim Zn( ) = +.C-

Thus, nI must be zero, otherwise we would have a contradiction.

Since (nl,n 2) is an arbitrary connected component, we conclude

that D contains only one connected component and has the formn+

(0,1_) where 0 < n <  +Co.

+Finally, if 2n < + we obtain (4.14) from Proposition 4.37. .

If in = += and (4.14) were false, then there would exist b > a

such that

lim Zn( ) = sup zn( ) < b . A

E+,, (0, )

By letting v (x) = U( ,x) for x C [a,zn()] and using Lemma 4.34

it would lead a contradiction as before. This completes the proof.

A.

Remark 4.45

From the above proof we know if E c Dn or D, (4.18) implies

O( Zk(V)) U'(,zk()) < 0 for 1 4 k 4 n. hus the zeroes of

T(E,-) and those of U(P,.) are interlaced.

Proof of Theorem 4.6

By (4.13), we know S+  as well as S- contains at most onen n

element. However, Proposition 1.43 and Remark 1.44 indicate that

S+ and S- are nonempty. Thus the result follows.n n

Since the proof of Theorem 4.7 needs more preliminaries and

Theorem 4.10 is closely related to Theorem 4.6, we prove Theorem 4.10

first.

tA1'
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Proof of Theorem 4.10

Let

v" + 1 1v - *j(wlvl')v, if v > 0
Tji ,v)

V" + Pv- 2(wjlv'V if V < 0L

Then T z R x C 2[a,b] + C~a,b] where C2_ = .[g C C2[a,b] Ig(a)cos8  "

g'(a)sinO = 0, g(b) = 0}. Let (X,u) be a zero of T with

u C S+ (X,O). If T (X,u), the F-rdchet differential of T with

a,b,n V

respect to v, is an isomorphism, then the hypotheses of the implicit

function theorem [30] are satisfied and hence there is an e > 0 and

a C 1-mapping U * u + (1 for li - Al < c such that T(U,u (p)) = 0.

Thus, it suffices to show Tv(X,u) is an isomorphism for every pair

(A,u) such that u c S ,b,n(X,8) or equivalently to show that 0 is

not an eigenvalue of Tv(X,u) [35]:

P"I [A* WJl)aj~ll~ll1 if u :0 0
TV{A'u)91 =, i . < (4.46.a)

%)I(a)cos8 - fl(a)sinO = 0, T(b) = 0 . (4.46.b)

Let u C S (.X,8). Let =u'(a) if 8= 0 and =u(a) if
a ,b,n%

0 < 0 4 2 then Ua(X1,@9 x) = u(x) for x C [a,b] and

ra,n(A, ,e) = b. Suppose 0 is an eigenvalue of Tv(k,u) with

eigenfunction T1. Multiplying by a constant if necessary,

satisfies (4.17.b). By the basic uniqueness result of initial value

problems I L (X, '8") = c(F'°)" But from Remark 4.45, we know

9 ( ,b) $ 0 which is contrary to (4.46.b). Thus we complete the

proof.

Now, we continue with the preliminary work needed for the proof

of Theorem 4.7. Let A > 0 and 0 4 8 < . For n i 1, we define
2

---------
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Q:,(XO) (resp. Qan( ,8)) = Ua(XEe6) San,

(resp. Sa(AQ)•
a,nAel

Again, for convenience, we will suppress dependence on x, e

or a from our notation whenever it is considered fixed.

Proposition 4.47

Let a > 0, A > 0 be fixed. Under the same hypotheses as in

Theorem 4.7, we have

M [Q+
1i Q), r= = {0-1Qj

(ii) For n > 2, Q+ C (resp. (n_1,nn])

+ + +
(iii) if (resp. Qn) j 0 then a+ Q. (resp. Q- Q {n).

(iv) If Qn (resp. Q-) contains a unique element then Q in+)

(resp. Q = dan}).

Proof

Let n > 1. Pick an increasing sequence { kI such that

+lim Ek ' nn "

Put

Vk(x) {U(Ekx) if x C ta,zn(k)]

i0 X C [Zn(Ek),w)

By Proposition 4.37

lira Zn(Ek) = (4.48)
k+ao

From the Remark 4.4, we know the nypothesis of Theorem 1.2 are

satisfied. Hence, by Lemma 1.57 and arguing like the proof of Theorem

1.2 we have a prior bounds on vk and obtain a subsequence (vk }

and a v C C2[a,-) C0 Hi[a,m) such that

AZj
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C2
'k . V uniformly on compact subintervals of (a,-=)

for x e [a,-). Thus, by the uniqueness result for the initial value

problem, v = U(Qn,.). Also note that, from (4.48), U(n,.) has at

most n - 1 zeroes in (a,0).

For n = 1, it is clear that v C S1. Hence, by Theorem 1.5, A.

(i) follows.

For n ; 2, if = 0 there is nothing to prove in (ii). If

n 6, since for any c Q+ ,  Dn_\Dn and by Proposition 4.12,
+ +. + +

Dn_\Dn = [OnOn_1), we have (ii).

To prove (iii), let n c , it follows from (ii) that a+.

Suppose n > Q* Since U(n,.) has n - I zeroes in (a,-), by

n

Proposition 4.12, U(f+,-) has at least n - 1 zeroes in (a,-). I

However, we already know U(Sn+'') C C2 [a,') +n H [a ) and has at mostn%

n - I zeroes in [a,-). Therefore On C Qn"

Finally (iv) simply follows from (iii). I
I.

Proposition 4.49 .p

Let X > 0 and a > 0 be fixed. Under the same hypotheses as

in Theorem 4.7, if n > 2 then Qn (resp. Qn) has no cluster pointinn n -

in (n, nn1) (resp. (n;_1,Q ] )-" 'A

+

The proof will be carried out only the case of Qn Some

preliminaries are needed.

Lemma 4.50

Let I > 0, a > 0 be fixed. Assume the hypotheses of Theorem %

4. I
4.7 are satisfied. Suppose c Qn for some n ) 2 and suppose that S.

Ul[,x) 9 (,x) < 0 (4.51)

sw %
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for x c (zn_1(),w). Then there exists a t C (zn.1(),U) such that

Y(Qt) > 0 . (4.52)

Proof

From Remark 4.45, we know (4.29) holds for 1 k 4n - I.

Hence, it follows from (4.30) that

(x) - Y(Zn_(c) )
'(x) > T(a) + $(x) n- (4.53)(x) - (z

for x C (Z n1(),W). Let

= Inf[xlw'(x) > 0} . (4.54)

By assumption (w.2), we know r <+

Suppose S > zn_1(F). The assumption (4.51) together with (4.20)

implies O'(x) < 0 for x C (Zn_ 1( ),B). So

OW< .z-() (4.55)

Similarly, Y'(x) < 0 for x (Zn_ 1( ),E). Hence

T(X) 4 T(Zn_1(&)) .(4.56)

By Remark 4.45 with k = n - 1, (4.19.a) yields (zn_1(O)) > 0.

Hence, there exists a 61 > 0 such that D(x) > 0 for

X C EZn.1(&)Izn_1(V) + 61]. Combining this with (4.54)-(4.56), we

obtain

T(x) > T(a)

From (4.21.b) and Lemma 4.23,

T(a) > 0 . (4.57)

Therefore, 1(x) > 0 for x C [zn_l(E),zn_1(E) + 611.

If B ( Zn 1 (E), by (4.20.b) and (4.51), T'(x) > 0 in

(Zn. (&),m). Hence, by letting L, lim T(x), where -< L 4

we have

I L -7 
Z z rI
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L I - (x) > 0 for x n 1 Zn(), ) (4.58)

and (4.52) easily follows if L, > 0. To show L, > 0. Note that

from (4.20.a) and (4.51), 0(x) < 0 in (zn- 1( ),o). Thus, by

letting L2  Irm O(x) where - 4 L2 < +, we have

L2 - O(x) < 0 for x zn-I(V) (459).

Letting x +w in (4.53) yields

L, > '(a) + L 3 (L1 - T(znl(E))) (4.60)

where

1 if L2 =

L3 =

L 3=L2/IL2  -n1(0))) if L2 >- •"

Suppose L2 < 0. By (4.59), we get L3 • 0. Combining this with

(4.58) and (4.60), we obtain LI > '(a). By (4.57), L1 > 0.

Therefore it remains to show L2 4 0. We argue indirectly. Note

that, by Lemma 1.7, we know

tim U(x) = 0.

Since (9/U)' = O/U 2 + +w as x - +a, if L2 > 0, we have

(V/U) + +- as x + 4+m. But this violates (4.51). So we rust have

L 0. This completes the proof.-

Lemma 4.61

Assume the hypotheses of Proposition 4.12 are satisfied. Let

C C n for some n > 2 and < r. Then for x ; zn_.1(n), we *.

have

- - -,, > , - , - -..
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Proof

From Proposition 4.12, we have zn..(n) > zn_1it). Next, by

Theorem 1.5, U(E,x) VT(n)(Xzn_1(),o,0,x) for x C [Zn£1(V)

and U(r,x) = VT(n)(Azn_1(n),1Ox) for x c [Znj(n),). (Recall

the function T was defined in (2.53).) Invoking (1.50), we have

1VT(n)(Xz -1(0,=,oX)1 > IV-r(n)(Xzn-l(n),=,o~x)1

for x c [zn_l(),o) and thus the result follows.

Remark 4.62

In this section, since f(x,y) is assumed to be continuously

differentiable, the hypothesis (f.1) is clearly satisfied. Hence, as

pointed out there, the inequality (1.50) as well as others should be

interpreted in the strict sense. In the remainder of this section, we

will use this fact without further comment.

Proof of Proposition 4.49

Let us define the function E = E( ,x) by

1 2 2 u(x)

2 l(x) +-u (x) -f V*(w(x)1y107)ydy if u(x) 0
0

1 2 2 2
[2 W + u W 2 ((x)if ) 00

where u U(E,.). Then

u(x)
u'u"+Xuu'-* 1(wruj")uu'- f ( yj )wlyjydy if u(x) 0

aE 0

ax u(x)

u-+Xuu-i 2 (w lul)uu,- f 1,(wlylO)wlyjdy if u(x) < 0.

Substituting (4.5) into the last equation, we obtain

e w

'AA N,-. - /.% .W% .~ '~ d
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u(x) 0 ,(,,,yl ),,'jyljaydy if u(x) >, 0
?E oa 1

ax u(x) (-3

f *,j(wlyI)w'yi Oydy if u(x) < 0
0

Next, letting 9 f p( ,-), then

3E u';1+ Xu9 - 4i(wjufa)uq if U(x) >0

u'91 + u9- 2 (wluta)uq if U(x) < 0

Combining (4.5) anfa (4.19.b) with the last equation, it follows that

E= T(,x) (4.64)

if , u U(g,.) c Hl[a,-). This together with Lemma 2.12

implies E(t,-) c Ll[a,-). Let s = Max(b,z n-l() ) where b was %

defined in (w.2). We claim that E(t,-) is decreasing on (s,m) and

therefore, we have

E(g,x) + 0 as x . (4.6.)

Indeed, if U(E,x) > 0 for x c (zn_1(&),w) (4.63) together with

(w.1) and (w.2) shows that E(E,.) is decreasing for x C (s,m). If

U(C,x) < 0 for x C (zn_1( ),0), (4.63) yields

x U(x)

Combining with (w.1) and (w.2) again shows that E(E,.) is decreasing

on (s,-).

Consider those & c such that there is a decreasing sequence

in Q which converges to as k + w. Then, by (4.13),

is the limit of the decreasing sequence fZn_1(Ck)l. Hence,

for every x > Zn_1(t), we have x > znl1(k) provided k is

%
5,.
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sufficiently large. From Lemma 4.61 we know

fU(tx)I > IU( kx)f (4.66)

for x

If U(Ex) > 0 for x c (zn_1(r),a) then U(gk,X) > 0 for

x £ (Zn_1(9k),=). Thus, by (4.63) and (4.65), we have

ao U(Ept)E(Cx) f f * j(w(t)jyja)w'(t)jyjI yy dt

x0

for x c (zn-l(1),) and
U(E ,t)

E(FEk~x) =f f j(w(t)jyfI')w'(t)fyIj'ydydt
x0

for x c (Zn.1(k), ). Combining this with (4.66), we get, for any

X > Zn-l(E),

E(Eklx) < E(ex)

provided k is large enough.

E
Since - is known to exist the last inequality together with

(4.64) implies

, 0 (4.67.a)

for every x > znI(E). However, (4.66) and (4.16) also show that

y(g,x) is nonpositive on [zn_1(9),-). Since 9(C,*) is a solution

of (4.17) it has only simple zeroes. Therefore

I(E,x) < 0 for x c (zn_1 (),) (4.67.b)

and hence

U(C,-)q,(,-) < 0

in (zn_.(),=). By Lemma 4.50, there exists an x (zn_1(E),-)

such that T(&,x) > 0 which is contrary to (4.67).
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If U(g,x) < 0 for x e (Zn_1( *) the same line of reasoning

with only the sign of (4.67.b) reversed yields a contradiction to

(4.67). Therefore, if c Qn it-cannot be the limit of a decreasing

sequence { k} C Qn. Likewise, with slight modifications in the above

argument it cannot be the limit of an increasing sequence in Q+.

Since any convergent sequence contains a monotone subsequence, the

proof is completed.

Recall the notations V,(X,a,b,8,x) and Vn(a,b,e) which were

defined in Remark 1.6 (b) and (1.41) respectively.

Lemma 4.68

Assume (r.1), (F.I)-(F.4) and (f.1) are satisfied. Let

b c (a,-) and X > v1 (a,b,8). Then, for x c [a,b]

V'(Aoaeb,e,x) = Ua(X,Vj(X,a,b,e,a),6,x) if 8 = 0

VI(X,a,b,e,x) = Uj(X,V±(X,a,b,6,a),8,x) if 0 < e

Proof

It simply follows from Theorem 1.5, the definition of

V±O(,a,b,8,-) and that of Ua(X,&,8,-).

Lemma 4.69

AssuLie the hypotheses of Proposition 4.12 are satisfied. Suppose

A > Uj1(a,b,8). Let V(Xa,b,O,a) (resp. VI) if 8 = 0 or

E - V+(X,a,b,O,a) (resp. V.) if 0 < 8 4 M. Let i V.(X,a,b,6,b)

(resp. V!)

(1) If , ' nb,n"0) (resp. D n,n(0 then ~~n18

(reSpo € fa,n+1(C)).

(Mi) If n > (),n(0) (resp. < a ,(0)) then <

(reap. ,

(ii).If n >~ -- (0 (s. + (0)).% the < n......

(resp.~~ > n. .(0)



90

Proof

i) If n • bn(0) by Proposition 4.12, n i Db.n(O). Hence

+ D,n+1 (°). Thus, by Proposition 4.12, we knowa,n

(1i) If n > 1b,n(0), by Proposition 4.12 n c D;,n(0). Hence

Da,n+ 1 (8). Thus, by Proposition 4.12, we have

a a, n+1()

Proposition 4.70

Assume the hypotheses of Theorem 4.7 are satisfied. Let X > 0,

0 4 O be fixed and n ; 2. If a > a > 0 and +an 8) (resp.
2

Qn( 8 )) t, then Q+ () (resp.a a,n(8 rs.Q,() +

Proof

We suppress A from the notations V,, U., and etc. Let

Q ,n(0) and suppose U 1E,0,-1 has interior zeroes at

xlx 2 ,...,XnI . It is clear that

V+(i,xl,e,x) if x C [ax 11

IV Ti)(xi-1'xi'O'x) if x C [XilX i ],  2 < i • n

where xn  + and the function T was defined in (2.53).

Since X > u1(a,xle) > uj(a,xj,8), by Proposition 1.43

V+(a,x,,B,') exists. By Corollary 1.45 (ii) if 6 = 0 or by

Corollary 1.45 (iii) if 0 < 8 4 1, we know

IV .(a,xl,,,x)l > IV..(a,xl,0,x)l -

Since

V.(a,xl,O,x 1 ) - U,( 16,,x1) = V!(x1 1x2,0,x1)

we get
lvL(a,Xlxl,,o,, )1.(4.71)

• .... ,.

w. ~ ~ ~ ~ ) ,. -V' 1% ' x +u 
-,  

" ( ' xi 4- , . . "m ,'." ","'-'+. . ,
+ .9 ,., .% • .',. ,. m ." .- , , , ..+ . + . + Il
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Now letting x0  a and looking at V (1)(xoxll,-) and

VT(i) (xi_..i,O,.), 2 < i 4 n, with the inequality (4.71), we satisfy

the hypotheses of Lemma 2.52. Hence there exists a v C S a,n().

Letting n = v'(a) if e = 0 and letting n = v(a) if 0 < 0 <
2

we have n E Q

Proof of Theorem 4.7
ITl

Let X o 0 be fixed. Since for every 0 < 6 - and for every
2

O a,1(8 ) as well as a() contains a unique element it is

sufficient to prove, by induction, the following.statement:

If for every 0 4 0 <M and for every a > 0, Q,(0) (resp.
2

Q+ (6)) contains at most one element, then, for every 0 0 <
2 "

+ (r s .ca n t ha e m r
and for every a > 0, Qa,n+( (resp. Qa,n+1(0))cannot have more

than one element. (4.72)

Suppose there exist a > 0 and 0 4 e ! such that
2

Q,n+1(6) contains more than one element. By Propositions 4.47 ('ii)
+ +

and 4.49, there is a Qan+1(8) such that (Sa,n+1(0)A, ) fl

Qa,n+l(e) = . Let b = za,1( ,n(9),8) and s = Za,li ,(). Take

any e c (a,b) such that ul(a,b,8)-< X. Then, by Corollary 1.45

(ii) or (iii),

Vf(a,s,O,s) < V(a,sBjs)

Let C2 = Ua(C 11 ,s). From Lemma 4.68

V.;a,s,e,s) E2

Thus, letting 93 " V(a,s,6,s), we have

C 2 C 3 •-

Since C2 C Qs,n (0 1' by the induction hypotheses and Proposition 4.47

., . . -,.. ,l,..._ . _ W*._ :.., *$*,.' ,.-, ... ... .. ... ' . .. ..., ", """ " " ". , -"....,.... -. '-,-.-'...;'v .-. .-. ,-.

6. -.-
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9.-

This yields
I

C3 > f2;,n(o) .

By Lemma 4.69 (ii), we have
+ (

V+'(aZ, s,0, ) 00 a ,n+1O)-'_

and (4.73) e

V+(a,s,ec) < aan+1(e) if 0 < 0 •

Since Q;,n(0) 3 0, by Proposition 4.70, we know Q,n(0) for
.,

8 c [b,s). Together with the induction hypothesis and Proposition

4.47 leads to PA
0%

QB,n(O) = {S1,n(O)}

for 8 E [b,s).

Now we verify that, for any a E (a,b) such that jij(a,b,6) < X .

and for any $ e (b,s)

V,(a,8,0,8) > ,n (O) • (4.74)

Suppose (4.74) were false, by Lemma 4.69 (1)

V4-ac,B;0,a) +' (0)
+

V,,)z~n(O)+ if 0 <80+ ( 1.2

Since 8 < s, by Corollary 1.45 (i),

V+.la,$ ,o,a) < V+(a,s,O,a)

and

V+l(cB,,a) < V+(a,s,0,a) if 0 < 8 • •

Thus,

V+'la,s,0,aL) > (0)+ ,
+l

and
]"1

p.

p.

, '. .. :. .',q; & -, i , . -- = == % - :, _ .. ...;, .,. .. ..;, : .. , . , ..... ,. ... .....
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V+(a,s,e,a) > .czn+1(e) if 2 < e < _

-

which would contradict (4.73).

Next, pick a 8 C*(b,s) and let a - a. It follows from (4.74)

that

lim V-(a,,e,3) > Q ,n(0)"

By Proposition 1.76, we get, for ll 0 c [0, i],

V4(a,B,e,8) > s,(0) a (4.75)

Since 8 c (b,s), by Corollary 1.45 (i),

-'. V+(a,b,O,a) < V+(a,$,0,a) < V (a,s,O,a)

and (4.76)

V+(a,b,6,a) < V+(a,8,0,a) < V+(a,s,6,a) if 0 < a <

5Let

E. 6V(a,$.,,a) if 8 = 0

V+(a,$,a) if 0 < 8 -

Since b za,1l(aa,n+1(6),B) and s = zaI(ElO), (4.76) leads to

a ,n+1(0) < 4 < 1 (4.77)

Suppose equality holds in (4.75). Then it is clear that *

94 C Qan+1(e) " But this together with (4.77) leads a contradiction

to the fact that (a cf . Therefore we must

have

V4(a,8,es) > OB,n(0)

By Lemma 4.69 (i), this leads to

'
C4 < 12a,n+1 ( 0 )

which is contrary to (4.77). Thus we complete the proof.

.... . ... .. .. ...X ' ." , .'o "-' ' .- , '. .'. ,'j . -. .' .'-. ' -. . .," .'- ',. * -' -'. '. - .'
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Now, it remains to prove Theorem 4.11. We first prove two lemmas

from which the result is immediat-, so as to simplify a later argument

in Theorem 5.1.

Lemma 4.78

Assume the hypotheses of Theorem 4.7 are satisfied. Let a > 0,

0 4 6 - be fixed. Then an  are continuous functions of X and
2 nl

lim Q() = 0 - (4.79)
0+

Proof

From Corollary 1.72 and (1.75.a), there exists a continuous

function k(X) such that

lim k(X) = 0

and

Q, +(X) k(X)

Thus (4.79) immediately follows.

Next, for the continuity of n+(X). Let (Xk} be a sequence

such that

urn x k = A*: k -

Since (Ak1 is bounded, by Corollary 1.72, xln+(X)) is bounded. By

passing to a subsequence if necessary there is a number Ln such that

(X Ln  as k + -. Since (XkI(Xk)) ( Xn , (Al n ) n and

hence Ln c BD+( 0). From Proposition 4.38, we know Ln # 0. Hence,Pn

by Proposition 4.12, Ln - +Z(X0). since any convergent subsequence
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of I('X+k)) must converge to nn(A0 ) we have
+i 0:M + 9(Xo)lir fn(X) =

X XO0

n can be treated similarly.

Proposition 4.80

Assume (r.1), (F.I)-(F.4) and (f.1) are satisfied. Let a ; 0,

0 < 6 < be fixed. Consider A0 > 0, to > 0 (resp. 4 0) and a
2

sequence (Xk,Ek) C D 0  (resp. V0) such that

lM (Xkkk) = (OO (4.81)
k+m

Suppose furthermore that, for k = 0,1,2,..., vk = Ua(XkIk,6 g,) is a

solution of (I)a with A = Ik  in (1.1.a). Then vk + v 0 in

5' (a,-) ii Lmra,-) as k + -.

Proof

From Lemma 1.7, we know vk(x) + 0 and vk(x) + 0 as x + o.

Thus, a similar argument to the one used to obtain (2.1.5) yields

fv,(t)dt 4 -vk(x)vk(x) + f r(t)v (t)dt (4.82)
x x

From Corollary 1.56, we know

V_(Ak,a,-,x) 4Vjk(X) (V+(Xk,a,-,x) • (4.83)

Put SUP (Ak}. Corollary 1.17 tells us that
koO

IV+±(Ak,a,-,x)I < IV+(3 ,a,-,x)l respectively . (4.84)

Therefore, letting c(x) -MaxtV+ (3,a,-,x), V_(,a,-,x)} , we have

IVk(X)I < c(x) (4.85)

and clearly, by Theorem 1.2

lrm c(x) - 0 • (4.86)
X+"

I ;' ' , -,.,_,zi 2 ., , , .- .- ",.- . . . . . . . .
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From Corollary 1.72, we know

IV 4(,a) K4(X,a)
L [a,-)

This together with (4.85) and (4.86) implies

lim IVk(X)vi(x)[ = 0 uniformly in k
X+CD

Also, (4.83), (4.84) and f V (X,a,-,t)dt + 0 as x + imply
x

lim f v2 (t)dt - 0 uniformly in k
X,- X

Therefore, from (4.82) we know

lim f vi2lt)d t = 0 uniformly in k

X+- X

Thus, given c > 0, if x is large

f v2(t)dt+ f v 2 (t)dt < e for all k) 0

x x

Since (Xk,Ek) + (X0,E0 ), the basic theory for continuous dependence

Aof initial value problems leads to

x

f Ivk - vol2 + Iv - v6j2dt <

a

for large k. Hence

,Vk - 0o 1 m Ivk - Vo1 2 + Iv -v6I
2dt

[a,-) a

+ f 1vk - v0 1
2 + IV - v612dt

x

< + 2 v(t) + v2ot) + vO
2 (t) + v6

2 (t)dt

x

< 5•

-.... ....
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Since for any x C (a,-)

Ivk(x) - vo(x)I2 = -2 f (Vk(t) - Vo(t))(vk(t) - v6(t))dt
x

j" 1v- v0 1
2 + Iv Vo-2d,

2
IV - v0 1 1

H (a,-)

We complete the proof.

Proof of Theorem 4.11

Let u (C) = Ua(,nn(X),.) respectively. Then the result easily

follows from Lemmas 4.78 and Proposition 4.80.M

V.1

- I1 U*IAIUl " - .~ ~ . 1 \ a - . . , .
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§5. BIFURCATION FROM THE LOWEST POINT OF THE CONTINUOUS SPECTRUM OF I

THE LINEARIZED OPERATOR

In this section, our aim is to give a bifurcation result which is

applicable to more general nonlinearities than those of §4, that is,

F(x,y) satisfies (f,2), (F.2), (F.3), (F.4) and

(F.7) There exist S > 0, X > 0 and functions * c C ([0,,=),[0,w)),

W C C ([0,-),(0,-)) such that F(x,y) = *(w(x)lya) if x > X

and IyI < S. The function 4 satisfies 4(0) = 0 and for

t £ (0,-), *'(t) > 0, *(t) > p * tq for some constants

p,q > 0. The function w satisfies

Wo
(w-3) > 0 for x c [X, ).

It is also assumed that r(x) satisfies

(r.3) r c CUO,-),(0,-)), r(x) -1 for x C [X,a).

We will show that there exist infinitely many connected components of

solutions of (1.1) which are distinguished by nodal properties and

these components bifurcate from the line of trivial solutions at the

point X - 0. To be more precise, we will prove

Theorem 5.1

Assume (r.3), (f.2), (F.2), (F.3), (F.4), (F.7) and (w.3) are

satisfied. Let E be the Banach space Hl1[a,-) r) Lo[a,-). Then, for
.

+ .

every n c N, there exists an unbounded connected component Cn

(resp. C-) C [0,-) x E, emanating from (0,0) such that if
n+ -+

(A,u) C Cn  (resp. C-) and X > 0 then u C Sa,nCX,9) (resp.

SanO Moreover, Cn+ (resp. C-) tl ({A) x E) 9 for every A > 0.

98
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Remark 5.2

Vote that the assumptions of Theorem 4.11 are stronger than those

of Theorem 5.1. Hence, so is the result.

Our approach is based on a method of which variants have been

used in [9], (101, (13], [331, [37], [41], [42] etc. A detailed

description and proof can be found in ([41], Appendix) or ([421, §3).

Proof

For fixed a ; 0 and 0 4 5 4-1 we let S+(=) = {(A,u) 6 R x E,
2n

(X,u} satisfies (1.1), u > 0 in a deleted neighborhood of x = a,

u has exactly n - 1 simple zeroes in (a,-)} U {(0,0)}, n ; I.

Let 0 be any bounded open set in R x E with (0,0) in its

interior. By ([41], Theorem A.6), it suffices to show

M1 S+1(-) V + 0

(ii) S+(m) is closed and its bounded subsets are relatively compact.

and the last assertion of the theorem. Since the latter follows from

the unboundedness of Cn and-Corollary 1.72 we only need to prove (i)

and (ii).

We prove (i) first. Let S+(b) = {(X,u) c R x C1 [a,b], (X,u)

satisfies (1.4), u > 0 in a deleted neighborhood of x = a, u has

exactly n - I simple zeroes in (a,b)} U I(Pn(b),O)} where

Un(b) - Un(a,ba) was defined in (1.41.a). From a result of

Rabinowitz [241, we know, for b > a, there exists a connected

component Cn(b) C Sn(b), containing (Un(b),0), such that Cn(b) fl

M)} X C[a,b]) i d for every A > Un(b). For each (X,u) C +(b),

we extend u to be zero on (b,w) and identify C+l(b) with an

%

,. extend'u"to be zero on. (b and.identify .... wi aN I "--
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unbounded connected subset of R x E. Let {bkl be an increasing

sequence such that bk +u as k + +co. By (1.41.d), ("In(bk),O) C 0
for all large k. Hence, there exists (Xk,Uk) c C+(bk) f 90 for

such k. Since 0 is bounded (Pk} is bounded. Using an argument

analogous to the proof of Theorem 1.2, we may assume, without loss of

generality that there is a X 0 o 0 and u0 c C2 (a,-)- n Hl[a,-) such

that

Xk + X0 (5.3)

2
uk + u0 uniformly on compact subsets of [a,-) . (5.4)

Then a slightly modified version of the proof of Proposition 4.80

shows that uk + u0 in E. Since (Xk,uk) C 90, (D0,u0 ) C D0- If

X0 = 0, Lemma 1.57, (5.3), (5.4) and (1.75.a) yield u = 0. Since

(0,0) c 0 this would contradict (X1 ,u0 ) c 0. Hence X 0 > 0. To

show (X0,u0 ) C S+(-) we need to prove

u0 ( 0 (5.5)

and

u 0 has exactly n - I zeroes in (a,w) • (5.6)

To show (5.5), let

U '~(a) if 9 -0

uk(a) if 0 < < "

for k o 0,1,2,.... Since A0 > 0, by (53), T-< Ak < 2A. for

large k. Invoking Proposition 4.38 yields l~kl > Cn-1 for such k.
Hence, by (54), > O E n-1" Thus u0 cannot be the trivial

solution.

N0
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In order to prove (5.6) we recall the notation D+(X,e),

an

Q+a, ) and Ua(X, ,,e.) introduced in §4. It suffices to show

Proposition 5.7

Suppose the hypotheses of Theorem 5.1 are satisfied. Let a > 0,

0 0 - and n c N be fixed. Let k E (Dan(Xkk') U Qan(Xk ' ))

and (Xk, k) + (XO,EO) as k . . Let u0 = Ua(XO,O,B,). If

X0 > 0 and (A0 ,u0 ) satisfies (1.1) then C Qan(X0,60) "

Since the proof of Proposition 5.7 needs some preliminaries we

postpone it. Now we prove (ii). Let [(Xk,Uk)} C Sn() such that

(Ak,Uk) + (X0 u0 ) in R x E. By the same reasoning as in (i), this

implies that there exists a subsequence, still denoted by f(Ak,uk) } ,

such that (5.3) and (5.4) hold. If A0 =0 Corollary 1.72 and

(1.75.a) imply u0 = 0. Suppose A0 > 0. The same argument takes

care of (5.5) together with Proposition 5.7 gives (5.6). Hence

(A0u 0 ) C SS(-). So S+(-) is closed.- To show the seqond assertion

of (ii), it is sufficient to pVove any bounded sequence of S+(m)

contains a convergent subsequence. Let {(Akuk)l C S+(-) be

bounded. Then the same line of reasoning as in (i) shows that there

exists a subsequence, still denoted by I(Ak,uk), and A0 ) 0,

u0 e C2[a,-) r) H1 a,-) such that (5.3) and (5.4) hold. By

Proposition 4.80, uk + U 0 in E.. Thus, we complete the proof except

for showing Proposition 5.7.

We begin with the preliminary work for the proof of Proposition

5.7.

p-

g..*.' - 1, Z- - V-- .N)
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Lemma 5.8

Assume the hypotheses of Tneorem 5.1 are satisfied. Given > 0

there exists an a I =ai(r such that for A c (0,X1, if a > a,

then any solution u satisfying

-u"= -Xr(x)u - F(x,u(x)) , (5.9.a)

u(a) = 0, u(S) = 0 (resp. u C L2[a,-)) (5.9.b)

is also a solution of

-u" = XU- (w(x)IuI)U , (5.10.a)

u(m) = 0, u(S) = 0 (resp. u C L2 [co)) . (5.10.b) I
Proof

By Corollary 1.72 lul 4 K3 (lm). Since for X (OXJ,
L [a ,-)

K 3(X,) + 0 as a + -. The same arguments as those in the beginning

of the proof of Theorem 3.1 give the result.

Lemma 5.11

Let c be a constant. If u is a solution satisfying the

equation -u" = Xu - (w(x)fuIa)u then v = cu is a solution

satisfying the equation -v" = Av - W(X) Ivl)v

Proof

This follows from the calculation:

-.VO M -cu*

- uAcu - *(w(x)lula)cu

- Xv - *(-W(X Ivl )v 7wx

Proposition 5.12

Let a ) 0, A > 0 aiad 0 ( 0 ( be fixed Let n -n,(X08

be the initial value (defined as in Proposition 4.12) such that

N,1)'
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TO(Xne, is the unique (up to the sign) one-node solution of

-U" =u - *(exp( x)Iu11)u , (5.13.a)

U(a)cos9 - u'{()sinG = 0, u C L2 [a,-) (5.13.b)

with the node z = zai(X,n,e). Suppose the function w satisfies

(w.3). Then any one-node solution which satisfies

-up - XU - 0(w(x)juja)u , (5.14.a)

u(a)cosO - u'(a)sin9 0, u c L2 [a,) (5.14.b)

cannot have its node exceed z.

Remark 5.15

As mentioned in Remark 4.15 (b), we use the notation a,2"16)

instead of a ,+

Proof

Let c > 0 and b = b(E)' = z + s. Let u, be the positive

solution which satisfies

-U - (b) exp( x)Iu)u , (5.16.a)

u(m)cose - u'(a)sina - 0, u(b) = 0 (5.16.b)

. and u2 be the negative solution which satisfies (5.16.a) and

boundary conditions

u(b) = 0, u c L2 [b,-) . (5.17)

Let u3 and u be the positive solution which satisfies (5.13.a), -

(5.16.b) and (5.14.a), (5.16.b) respectively. Let u4 and u6 be a-

the negative solution which satisfies (5.13.a), (5.17) and (5.14.a),

(5.17) respectively. Note that the existence of u2, u4 and u6

follows from Theorem 1.2 and the hypotheses of , and w. To insure

the existence of Ul, u3 and us we argue as follows. Since the

NW .W,*-
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restriction of U (X,,,) to [a,z] is the unique positive

solution on that interval, by Proposition 1.43,

This together with b > z and the fact that W1(a,.,$) is a

decreasing function yields X > Ul(a,b,e). Then by Proposition 1.43

again implies the existence of ul, u3 and u5.

Now, from the assumption (w.3), it is easy to see that

w(b)exp( x)/exp( b) 4 w(x) if x > b

and

> w(x) if x<b

Hence, by Corollary 1.17

u (b) < ul(b) (5.18.a)

and

ug(b) > ul(b) . (.1.b)

Next, we claim that

ulb) < uA(b) . 15.18.c)

We prove this indirectly. Note that the nonlinearity in the equation

(5.13.a) satisfies the hypothesis of Corollary 4.9. Suppose u5(b) =

u4(b) this would imply the boundary value problem (5.13) has another

one-node solution aside from U (X, ,8,.) which is contrary to

Corollary 4.9. If u3(b) > u4(b). Since u4(b) -1,b(XO), by

Lemma 4.69

where

u{(C) if e = :
[u3(4) if 0 < e 4 2
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On the other hand, since

<= z b =-zcil(A, ,8)

(4.13) yields

which contradicts an above inequality < Ps,2(X,8). Therefore

(5.18.c) must be true.

Let c = (exp( b)/w(b))l/a. By Lemma 5.11,

uj(b) = cuj(b) (5.18.d)

and

uj(b) = cu4(b) . (5.18.e)

Combining (5.18.a)-(5.18.e), we obtain

ug(b) > ui(b) . (5.19)

Thus, there is no one-node solution whose node is at b. Since this

is true for any b(c) with c > 0, the proof is completed.

Remark 5.20

The fact that (5.19) is true for all b(e) with c > 0 will be

used in the proof of Proposition 5.7.

Proof of Proposition 5.7

Suppose Ua(XO,C0,8,.) has j - I zeroes in (a,-) for some

j < n. We first assume k C Qa,n(Xk ' )" If j > 1, by the

continuity of Za,j_1

Zajj_1(k,kO) < Za,jl(x0,&o,8) + 1

for large k. Pick a sufficiently large a, so that

) Max za,J_1(Ak, ke) (5.21)
k)1

and Lemma 5.8 holds for a > a,. In particular, taking a -a we

~ ~ /p ~ a-



106

know VrT(j)(k,a,b,O,.) and VT(j+)(Xk, are solutions

satisfying (S.10.a), where b = b(c) was defined in the proof of

Proposition 5.12. By Proposition 5.12 and Remark 5.20 we have

IVT(j)(Xkazj O,b)l " I (j+1)(Xk,b, , (5.22.a)

By (5.21) and (1.49)

IV.(j)()IkZj-1,b,O,b) I > IV'(j)(Ak, ,b,O,b)j (5.22.b)

where zj (Za,j_1(XAkC . Hence

IVT(j)(Xk,zjlbO,b ) > IVT(j+l)(Xk b,-,O,b)l • (5.22.c)

Since (5.22.c) is true for every b(c) with C > 0 we claim that

Ua(Xk,1kIo) cannot have its j-th zero exceed za,1(Xk,Q,O), where

z ,1(Ak,,O) and C = na,2(XkO) were defined in Proposition 5.12.

Indeed, suppose j = n - 1 we have

V (j)(Xk,zjlzj,0,zj) = V4(j+l)(k,Zjc*,O,zj) (5.23)

where zj = za,j(XkPkIe). Thus (5.23) would be contrary to (5.22.c) S

if zj > z,1(Xk,,O). If j < n- 1, we have

VI(j)(Xklzjl,zj,zj) = VT(j+)(Xkzjzj+1,0,zj)

where zj+1= za,j+1(AkEke). By (1.47)

I1V(j+l)(Xk,zj,zj+,0,zj)I < IV'(j+l)(Xk,zj,,0,zj)l . (5.24)

Hence

IV (j)A(XkZj) l,zj,O,zj)l < IVI(j+l)(Xkzj, ,O,zj)I (525)

which again would be contrary to (5.22.c) if zj > zQ,1(XknO).

Therefore, in either case, Ua(AkCk,8,.) cannot have its j-th zero

exceed za,1(Ak,,O). Since zs,, is continuous in A and 4 and

by Lemma 4.78 Q - n is continuous in , za,1(.,la,2(o,O),O) is

a continuous function of X. Since (Xk1 is bounded, there exists a

B> a such that
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Max za,1(kQ,2(XkO),0) < 1
k)1

which implies

Max za,j (%kk) 4 B (5.26)
k>1

Since Ukl converges to u0 , uniformly in the cl-norm, on ccmpact

subintervals of (a,w), (5.26) implies u0 must have at least j

zeroes in (a,=) which is contrary to our assumption that u0  has

j - 1 zeroes in (a,-).

If j = 1, a slight modification in the above argument shows the

same kind of contradiction occurs. We only sketch the significant

difference: the points Zaj+1(Xk,&k,a) are replaced by a for all

k. Thus a new version of (5.21) can be easily satisfied. Since

Corollary 1.32 and (1.49) imply

1Vx4(J)(Xk~aubO~b)I > IVI(j) (Xk~a~bO~b)f

which replaces (5.22). By the same reasoning

1V4(j)(Ak,a,b,O,b)1 > IV;(J+l)(Xk b,-,O,b)l (5.27)

which is (5.22.c) in this case.

Next, suppose k Da,n (+ ke)" This case only requires a slight

modification of the proof of the previous case, so we only indicate-

the significant differences as follows: let b = Zan(Xk, k,8),

k - 1,2,3,... . The functions Ua(Ak, k,8 ,o) are understood to be

defined on their maximal interval of definition. From (1.47) we know

IVT(J+)(A~b,,O~~ IV.'( J4.) (Xk,b,bksO ,b) I
This together with (5.22.c) yields

Ib >
° Ib ) l
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which is (5.22.c) for this case. Finally replace - by bk in

(5.23)-(5.25) and (5.27).

Since any sequence {&O contains a subsequence which lies in

one of the above cases we complete the proof.

W4 .

oS
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16. ANALOGOUS RESULTS FOR RADIAL SOLUTIONS IN HIGHER DIMENSIONAL

CASES

In this section, we consider the partial differential equation

-eu = ,X?(x)^i(x) - F(x, (x))Z(x), x R (6.1.a)

and seek

U L2 (RN) n C2(RN ) • (6.1.b)

It is assumed that S RN * (0,-) and F RN x R + [0,=) are

radial symmetric, that is, there exist functions r :0,o) (0,c)

and F : [0,-) x R + [0,co) such that

r(x) = r(p)

and

F(Xfy) -F(p,y)

for x (RN and p = jxj. since our aim is to look for radial

solutions of (6.1), (6.1) is equivalent to studying

-u" N - u Xr(p)u - F(p,u)u, 0 < p <'4 , (6.2.a)
P

u'(0) = 0, f pN-lu 2 dp < +- (6.2.b)

0

where and throughout this section prime always represent

differentiation with respect to the radial variable.

Besides assuming (r.1), (F.1), (P.3), (P.4), (F.S)' (where it is

understood p plays the role as x did in the one-dimensional case),

we replace (F.2) by (F.2)'.

(M.2)' There exists positive numbers ai and continuous functions

i  [0,-) + (0,-) which satisfying

109
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Gof N - l1 2/ ai d
P WN1 < 2/a - 1,2 (6.3)

0

such that F(p,y) > wl(p)Iyja 1 for p c [0,-), y > 0

and F(p,y) w w2 (p)lyla
2 for p C [0,.), y < 0.

Remark 6.4

If we let .i(x) = wi(p) for x c RN and 1Ix - P then the

-2/a.

groth condition (6.3) is equivalent to the condition j wi dx <
RN

which has been imposed in (3] and [8].

Our goal is to generalize the results of §1-5 to this radial

case. The arguments parallel those of the earlier sections.

Therefore we will be more sketchy with details than earlier.

A new difficulty in treating problem (6.2) is that it has a

singularity at the origin. Thus in the spirit of the earlier

sections, we approximate (6.2) by

-u - u' = kr(p)u - F(p,u)u , (6.5.a)
p +C

u'(0) - 0, u(b) = 0 (6.S.b)

where e > 0 and b c (0,w). We will apply a global bifurcation

result of Rabinowitz ([24], Chap. 4) as well as obtain certain

estimates for solutions of (6.5). To do so, we look at the following

equivalent problem:

-((p+e)W-l')l - Ar(p)(p+e)N-lu - (p+c)N-F(p,u)u , (6.6.a)

u'(0) - 0, u(b) - 0 . (6.6.b)

If (II)b,c is linearized about the trivial solution u 0 we get

-((p + A)Nlu) - Xr(p)(p + C)N-lv, (6.7.a)

v'(0) - 0, v(b) - 0 • (6.7.b)

N N
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Let S 1() (resp. S (b O) be the set of u C C2 [0,b] such

that u satisfies (6.5), u > 0 (resp. < 0) in a deleted

neighborhood of x = 0, and u has exactly n - 1 simple zeroes in

(O,b), where A > 0 and n 1 1 is an integer. If (r.1), (F.1),

(P.2)', (F.3) and (F.4) are satisfied, a direct application of the

global bifurcation theorem of [24] shows that (II)b,c possesses two

unbounded components C (b,e) and C-(b,e) of solutions in

R x C1[0,b]. Both contain (Vn,0), where--in = n(be) is the n-th

eigenvalue of (6.7). If X > On and (A,u) c (be) (resp.

Cn(b,e)), then u c S (A) (resp. ,,()); Furthermore, a
n Rlem .bseo

result we mentioned in Remark 1.44 shows that the projection of

C,(b,e) (resp. Cn(b,z)) on R is [Pn-,). Also, a version of

Proposition 1.43 holds here.

In order to obtain results for the limit problem, we need some

estimates as follows.

Lemma 6.8

Assume (r.1), (F.1) and (F.2).are satisfied. Let X > 0 and

> 0. Then there exist constants Z 5 =. !5(,e) and

6 6 (X £0 ) such that for all e £ [O,eo] and b c (0,-) if u

is a solution of (II)b,e

b

f (0 + E)N-lu 2dp 4 15 (6.9.a)
0

and

bf (P + e)Nlu2dp 4 k6 ( 16.9.b)
o6
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Proo f

We argue like the proof of (1.58.a) and (1.58.b). Let
2 )2 ai. b i2aip

ks  k5 (X,b,c) - (Ar 2 ) 'Cf (P + C)"- W dP) and
i=I 0

k6  k6 (A,b,c) = (Xr2 )k5 (X,b,c). Then the same arguments as the

proofs of (1.58.a) and (1.58.b), except for the presence of the extra

weight (p + E)N-1, show that

b
f (p + C)N4lu2dp 4 k5 (X,b,e) (6.10.a)

and

b
f (p + C)N-lu' 2dp 4 K6 (X,b,E). (6.10.b)
0

Letting k5 (X ,) = (r ) 2/a(fo (p + Co)N-', 21 /i dp) and
=1 0

k (),C) = (Xr 2)k 5(X,e 0). We have (6.9) for any e £ [Oc 0] and

b c (0,-).

Remark 6.11

By assumption (F.2)', it is easy to see that k i ,) < + for

any A > 0 and CO > 0, i - 5,6.

Lemma 6.12

Assume (r.1), (F.1) and (F.2)' are satisfied. Let A > 0, b > 1

and c e (0,e0). Let u be a solution of (II)b,, . Then there exists

a constant k7 - k7 (0, 0 ) such that

lul [1,b c k7  . (6.13)

I.'
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Proof

Arguing like the proof of (1.57.c), we have, for x (1,b],

that

u2(x) < 2 (fb u
2dp) 1/ 2 (f b +2dp)I/2

x x

b b

4 2(x + 
1

)I-N (f (p + 1)/N-1u2dp)/2 ( + )N-lu,2dp)I/2
x x

4 2(f (p + u)N-lu2dp) /2(f (p + e)N-lu.2dp) 1/ 2

0 0

f f (P + C)N-lu2dp + f (P + C)N-lu'2 d"
0 0

Let c~ k8 X~e0  = j~ ~ 1/2Let k8  k8(XC 0 }  (k 5 + k . By Lemma 6.8, we have

|u| < k 8  (6.14)
L(1,b]

Next, let = Min wi i 1,2 and k7  Max((Xr 2/Zl
) 1/ ,

pC 0,1] V
- 1/02

(Xr2/w2 ) , k 8). If Iu(p) 4 k8 for all p c [0,1] we have

completed the proof. Otherwise, let .M ax fu(Pf !U1 must be

p4(0, 1]

equal to M at some point t c [0,1). Suppose u(t) = M then u

attains its maximum at t. Suppose t = 0. Since u'(0) - 0,

u"(0) ( 0. It follows from (6.5.a) that

F(0,u(0)) X Xr(0)

This together with (F.2)1 and (r.1) leads to

Val.

M 4 (Xr2/wl(0))

If t c (0,1), then u'(t) - 0 and um(t) 4 0. The same argument as

above shows

%I
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M 4 ( Ar2/wl(t)) 1 1

Therefore, in either case, we have

~1/0.1
M (Ar2/l

Suppose u(t) = -M then u attains its minimum at t. By an

analogous argument, we get

M 1/a2
M4 ' (r 2/w2 )

Hence (6.13) easily follows.

Lemma 6.15

Assume (r.1), (F.1) and (F.2)' are satisfied. Let 8 > 0 be

fixed. For any b > a if u is a solution of (II)b,e and

lul 4 M then there is a constant k9 - kg(X,S,M) such that
L (0,81

for p (0,8]

Iu'(p)l < k9 p . (6.16)

Proof

Integrating (6.6.a) over [O,p] together with (6.6.b) yields

(p + C)N'lu'(p) f [F(t,u)u - Xr(t)u](t + £)N- 1dt

0

Invoking the mean value theorem for integrals, we get

N-i N-i
(p + C) u'(p) = A(s)(s + e) p

where A(s) - [F(s,u(s))u(s) - Xr(s)u(s)] for some s C [O,p].

Letting k9 - kg(A,S,M) - Max [F(t,y) + Xr2 ]jyj, (6.16) now easily
Oct'8

follows.
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Next, we state the uniqueness and existence result for positive

(resp. negative) solutions of (6.2) as follows:

Theorem 6.17

Assume 'r.1), (F.1), (F.4) are satisfied. Let X > 0 be fixed.

If U1, u2 are two solutions of (6.2) such that Ul, U2 > 0 (resp.

< 0), then

U I  U2 in [0,)2

Let L2 [O,) be the weighted Hilbert space of u such that
p

f U2 (p)pN-Idp < -. Define H1 [,) by u c HI[0,o) if and only
0 pP

if u C L2 [O0,-) and u' c L2 [0,-).
P p

Theorem 6.18

Assume (r.1), (F.1), (F.2)', (F.3) and (F.4) are satisfied.

Given X > 0 there exists a positive (resp. negative) function

u C C2 [0,_a) f Hl[0,c) satisfying (6.2) such that

lim p(N-1)/2U(P) = 0 (6.19.a)
0*=

and

lir p(N-1)/2u'(p) = 0 . (6.19.b)

Remark 6.20

(a) In fact, we will show every solution of (6.2) belongs to

C2 (O,_) r) HI [0,=) and satisfies (6.19).

(b) If u c C2 [0,_) fl H 1 [0,=) and satisfies (6.2) by letting

Q(x) - u(p) for Ixl - p and x c RN, then c c C2 (RN)

r) H I(RN) and satisfies (6.1.a).

x~mA -~--~s-*-...-'-
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(c) Theorem 6.17 as well as "monotonicity" properties like

Corollaries 1.17, 1.32 and 1.45 actually hold for positive (resp.

negative) solutions of (6.6) with c > 0. Their proofs are the

same as the earlier ones with only the equation (1.1.a) changed

to (6.6.a) and the decay of solutions lim u(x) = lim u'(x) = 0

to (6.19). Therefore we omit the proofs.

Proof of Theorem 6.18

Let {bk) be an increasing sequence and {Ck} be a decreasing

sequence such that bk + = and Ck + 0 as k + c. Let

Uk = V+(X,bk,sk,-), the unique positive solution of (II)b, By

Lemmas 6.12 and 6.15, we know for all bk > , k c0' there is a

constant C 1 = Ci(X,bk,eo) = K7 + K9 - bk, where K9 -K9(,bkK7),

such that for all I ) k

itC 1[o,b ]

and

Max k9N,

By the same line of reasoning as in the proof of Theorem 1.2, there
exists a subsequence {uk } and a u C C2 [0,_) ) H1 [0,c) such that

j P

C2  -,

Uk - u uniformly on compact subsets of [0,-) . (6.21)

This together with (6.16) shows u'(O) - 0. Also the same sort of

arguments used in the proof of Proposition 1.76 shows u cannot be -"

the trivial solution.

N.
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To show (6.19) holds, we make the transformation v p(N-')/2.

Then (6.2.a) takes the form

(r1N - - 3)

(N - (pN - 2 F(Pv)lv (6.22)

where F(p,y) = F(p,p I-N)/2y). Taking an a > 0, viewing v as a

solution of (6.22) on the interval [a,w), and using (6.2.b), we see

v C L 2 (a,w). Invoking Lemma 1.7 yields v(p) + 0 and v'(p) + 0 as

S-. Thus (6.6) and (6.7) follow.

Next, the existence cf solutions possessing a prescribed number

of nodes will also be established. Let S+(X) (resp. 9-(X)) be the
n n

set of u C C2(0,.) n HI[O,-) such that u satisfies (6.2), u > 0

(resp. < 0) in a deleted neighborhood of x = 0 and u has exactly

n - I simple zeroes in (0,w), where A > 0 and n > I is an

integer.

Theorem 6.23

Suppose (r.1), (F.1), (F.2)'--(F.3), (F.4) and (F.5)' are

satisfied. Let X > 0 be given. Then +(X) and -(X) are
n n

nonempty for all n C £N-

Proof

We first need a new version of Lemma 2.52 provided that (r.1),

(F.1), (F.2)1, (F.3) and (F.4) are assumed. Indeed, the proof of

Lemia 2.52 depends on existence, uniqueness, continuity and

"monotonicity" results for positive and negative solutions which can

be insured by our hypothesis here. Next, make the transformation

V p(N-I)/2. as in (6.22). We look at the following problem
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-" (Xr(p) - 4 - 3) _ F(p,v)v (6.24.a)

vu) = 0, v C L 2 [,_) . (6.24.b)

If a is large enough, Xr(p) - 2 ) I r, for p > a.
4p2 fo2p a

Since the function F satisfies (F.5)' and F(p,Y) = F(p,p(1-N)/2Y),

F(p,-y) = F(p,y) if jyj < 6 and p > Max(1,X). Thus the function

F satisfies (F.5)'. Also F(p,y) satisfies (F.2)' implies that

F(p,y) satisfies (F.2). The remaining assumptions of Theorem 3.1 can

be checked easily. Hence, for every n > 2, if a is sufficiently

% large, by Theorem 3.1, there exists a v, S+ a() (resp. S ,n(X)).

Let u, = P (I-N)/ 2v, and u I satisfies

- u' = Ar(p.u - F(,u)u , (6.25.a)

U(-) 0, u c L2 [a,w) (6.25.b)P

and has the same nodes as v, does. The rest of the proof is like

ml the second half of the proof of the Theorem 3.1. Let x0 = 0, Xn =

and xi, 1 4 i < n - 1, be the nodes of ul. Invoking the

"monotonicity" properties and the new version of Lemma 2.52 we take

ul as starting point and iterate as earlier to obtain a solution

which belongs to S (W) (resp. -(O)).
n n

The dimension N = 3 is rather special. In view of (6.22),

(N,- 1)(N - 3)

vanishes if N - I or 3. This enables us to obtain
4p

more results when N - 3. Assuming

(F.61 There are *I,42 C CI([0,-),[0,.)), 0 1 (o) - 42(0) - 0,

> 0 in (0.-) and a positive number a such that
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(w(p)p1jy'), y > o, p E [o,-)

1 2(w(P)P lyla), y < 0, p C [o, )

where w c C([O,a),fO,=)).

We can invoke results from §4 to get the following uniqueness and

bifurcation resu'ts for solutions of (6.2).

Theorem 6.26

Suppose (r.2), (F.6)', (i.1), (w.1) and (w.2) are satisfied. Let

N - 3. Then, for very X > 0, S(X) contains at most one element.
n

If (4.2) is further assumed, S has a unique element. Moreover, let

I be the Banach space HIc0,-) n L[0,* o)- Then, for each n cN,
p

(6.2) possesses two curves of solutions Cn and Cn in R x with

Ct = ((X,u±(X))fX > 0} U {(0,O)} and u±(X) c n
nn n n

* Remark 6.27

Theorem 6.23 is not quite applicable to the existence part of

ITheorem 6.26 since F(O,y) = 0 for y c R.

Proof
If u e S n ), by the transformation _v = pu, it is easy to see

that v c C2 [0,-) HI1 [0,o,), v(0) = 0, v'(0) = u(0) and v satisfies

(4.5). Thus, if (r.2), (.6)', (.1), (w.1) and (w.2) are satisfied,

by Theorem 4.7, l(X) contains at most one element.n

Suppose (4,2) is further assumed. By Corollary 4.9, +0n(X,0)

contains a unique element v c C2[0,-) r) H'[0,). From the

assumptions for the functions , and w, (4.5) shows v" C Clio.)

and hence v C C3 [0,_). Let u(p) p-lv(p) for p £ (0,-),

u(O) - v'(0), u'(0) 0 and u"(0) - v'''(0)/3. It is easy to see
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that u c C2 (o,-) n H I[0,) and u satisfies (6.2). We claimP

u C C2 [0,_). Indeed, v(O) 0 and (4.5) imply v"(O) = 0. Hence

uir u(p) lim p-v(p) = v'(O)

So u is continuous at 0. By Taylor series expansion, v(p) =

V'(0)p + v'''(0)p 3/6 + o(p3 ). It follows that

lim u'(p) = lir [pv'(p) - v(p)]/p 2 = lim [v'(p) - v'(0)]/p

p+O p O p+0

= v"(0) = 0

So u' is continuous at 0. Finally v'(p) = v'(0) + v'''(O)p 2/2 +

o(p2). Thus

m u"(p) =lim 1.. 1VI(P) - v'(0) v'' (0)p/61
P+4O dp p

Slrn ( - v'(P) - v'(O) v'"(o-))

p+O p

Sv'"'(0)/3

So u C C2 [0,06). It is now clear that u c

To prove the last assertion, we note that Theorem 4.11 and the

transformation u - plv induce conr ted components of solutions of

(6.2) in R x H' [0,-). By an argument analogous to the beginning of
P

the proof of Lemma 6.12, we have luI  U 21 u 11 [1,) H1(0,-)
p

if ( 1 1 ),(X 2 ,U 2 ) -" This together with the continuous

dependence of the solution for the initial value problem

-uI -.N = Xr(p)u - F(p,u)u
P

u(O) - U0 , u'(0) u6

shows Ct are connected in R x E.n
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Let fl(p,y) = F(p,p-ly)y. Under the assumptions

(f.2)' f1 (p,y) is continuously differentiable in [0,-) x R

and

(F.7)' There exists 5 > 0, X > 0 and functions

SC1 ([0,-),[0,-)), w C C([0,-),(0,-)) such that

F(p,y) = 4 (w(p)pajyju) if p > X and jyj 4 0. The

function 4 satisfies 4(0) = 0 and for t ,

*,'(t) > 0, 4(t) > P _ tq  for some constants P,q > C.

We have a bifurcation result which is parallel to Theorem 5.1.

Theorem 6.28

Suppose (r.3), (f.2)', (F.2)', (F.3), (F.4), (F.7)' and (w.3) are

satisfied. Let N = 3 and E = H1 [O,-) nf L0,-). Then, for every
pe +

n . N, there exists an unbounded connected component C1  (resp. Cn )

C (0,-) x E, emanating from (0,0) such that if (X,u) c C+  (resp.
)+

Cn ) and X > 0 then u cS n (X) (resp. Sn()). Moreover, C+
n n n

(resp. C-) n (md x E) 9 for every X > 0.

The proof follows the same strategy as we used in Theorem 6.26,

so we omit it.

V ,',

-jea
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